MATRIC NUMBER: 17/ENG02/029

DEPARTMENT: COMPUTER ENGINEERING

1. A filter is a circuit capable of passing (or amplifying) certain frequencies while attenuating other frequencies. Thus, a filter can extract important frequencies from signals that also contain undesirable or irrelevant frequencies.

I. Radio communications:

Filters enable radio receivers to only "see" the desiredRadio communications: Filters enable radio receivers to only "see" the desired signal while rejecting all other signals (assuming that the other signals have different frequency content).

II. DC power supplies:

Filters are used to eliminate undesired high frequencies (i.e., noise) that are present on AC input lines. Additionally, filters are used on a power supply's output to reduce ripple.

III. Audio electronics:

A crossover network is a network of filters used to channel lowfrequency audio to woofers, mid-range frequencies to midrange speakers, and high-frequency sounds to tweeters.

IV. Analog-to-digital conversion:

Filters are placed in front of an ADC input to minimize aliasing
2. Designing a Low-Pass Filter with 0.005Ω resistor and 0.01 F capacitor

A 100 V Amplitude was selected with a frequency of 1 Hz for the Sine Wave Source.

3. Determining the Cut-off frequency

The cut-off frequency is calculated by $\mathrm{F}=1 / 2 *(\mathrm{pi} * \mathrm{R} * \mathrm{C})$
When $\mathrm{R}=0.005 \Omega$ and $\mathrm{C}=0.01 \mathrm{~F}$
$\mathrm{F}=0.5 * \mathrm{pi}^{*} 0.005 * 0.01=3189.099 \mathrm{~Hz}$

4. Design Output

The transfer function equation for the circuit is given as
$(1 / \mathrm{RC}) /(\mathrm{S}+1 / \mathrm{RC})$
When $\mathrm{R}=0.005 \Omega$ and $\mathrm{C}=0.01 \mathrm{~F}$
Transfer Fcn $=\left(1 / 0.005^{*} 0.01\right) /\left(\mathrm{S}+\left(0.005^{*} 0.01\right)\right)=(20000) /(\mathrm{s}+20000)$

A. If two signals of $5 \mathrm{~K} \Omega$ and $2 \mathrm{~K} \Omega$ are pass through the filter at different intervals. Discuss your observation

When the signal of $5 \mathrm{~K} \Omega$ is passed through the filter, the following result is obtained:

The transfer function equation for the circuit is given as
(1/RC)/ $(S+1 / R C)$
When $\mathrm{R}=5000 \Omega$ and $\mathrm{C}=0.01 \mathrm{~F}$
Transfer Fcn $=(1 / 5000 * 0.01) /(\mathrm{S}+(5000 * 0.01))=(0.02) /(\mathrm{s}+0.02)$

Observation: The signal is attenuated to 3.869 ohms

When the signal of 2 K ohms is passed through the filter the following are obtained results: The transfer function equation for the circuit is given as
(1/RC)/ (S + 1/RC)
When $\mathrm{R}=2000 \Omega$ and $\mathrm{C}=0.01 \mathrm{~F}$
Transfer Fcn $=(1 / 2000 * 0.01) /(\mathrm{S}+(2000 * 0.01))=(0.05) /(\mathrm{s}+0.05)$

Observation: The signal is attenuated to 9.266 ohms

