NAME: BENSON GABRIEL E

17/ENG02/015

DEPARTMENT : COMPUTER ENG

A.

A filter is a circuit capable of passing (or amplifying) certain frequencies while attenuating other frequencies. Thus, a filter can extract important frequencies from signals that also contain undesirable or irrelevant frequencies.
In the field of electronics, there are many practical applications for filters.
Examples include:

- Radio communications: Filters enable radio receivers to only "see" the desired signal while rejecting all other signals (assuming that the other signals have different frequency content).
E DC power supplies: Filters are used to eliminate undesired high frequencies (i.e., noise) that are present on AC input lines. Additionally, filters are used on a power supply's output to reduce ripple.
\geq Audio electronics: A crossover network is a network of filters used to channel low-frequency audio to woofers, mid-range frequencies to midrange speakers, and high-frequency sounds to tweeters.
- Analog-to-digital conversion: Filters are placed in front of an ADC input to minimize aliasing.

B. Designing a Low-Pass Filter with 0.005Ω resistor and o.01F capacitor

A 100V Amplitude was selected with a frequency of 1 Hz for the Sine Wave Source.

C. Determining the Cut-off frequency

The cut-off frequency is calculated by $\mathrm{F}=1 / 2^{*}\left(\mathrm{pi}^{*} \mathrm{R}^{*} \mathrm{C}\right)$
When $\mathrm{R}=0.005 \Omega$ and $\mathrm{C}=0.01 \mathrm{~F}$
$\mathrm{F}=0.5^{*} \mathrm{pi}^{*} 0.005^{*} 0.01=3189.099 \mathrm{~Hz}$

D. Design Output

The transfer function equation for the circuit is given as
($1 / \mathrm{RC}$)/(S +1/RC)
When $\mathrm{R}=0.005 \Omega$ and $\mathrm{C}=0.01 \mathrm{~F}$
Transfer Fcn=(1/0.005*0.01)/(S + (0.005*0.01)) $=(20000) /(\mathrm{s}+20000)$

A. If two signals of $5 \mathrm{~K} \Omega$ and $2 \mathrm{~K} \Omega$ are pass through the filter at different intervals. Discuss your observation

When the signal of $5 \mathrm{~K} \Omega$ is passed through the filter, the following result is obtained:

The transfer function equation for the circuit is given as
($1 / \mathrm{RC}$)/(S + 1/RC)
When $\mathrm{R}=5000 \Omega$ and $\mathrm{C}=0.01 \mathrm{~F}$
Transfer Fcn=(1/5000*0.01)/(S + (5000*0.01))=(0.02)/(s+ 0.02)

Observations: The signal is attenuated to 3.869 ohms

When the signal of 2 K ohms is passed through the filter the following results are obtained: The transfer function equation for the circuit is given as
(1/RC)/(S + 1/RC)
When $\mathrm{R}=2000 \Omega$ and $\mathrm{C}=0.01 \mathrm{~F}$
Transfer Fcn=(1/2000*0.01)/(S + (2000*0.01))=(0.05)/(s+ 0.05)

Observations: The signal is attenuated to 9.266 ohms

