Name: Chikere Chibu-udom

Matric Number: 19/ENG05/024

Department: Mechatronics Engineering

Date submitted: 05/08/2020

	Name Chikere Chibu-udon
	Separtment: Mechatronics Engineering
	MOONE NUMPER IN / F. OF / F. I
	La provide the state of the sta
1	19 HCOOH - Methanic aid approximation the above situation
	HzcHz COOH - Ethanoic acid
5	CH2 (CH2) COOH - PEXANIE OCI
0	HOOCCH2CH2CH2COOH D-D
4	HO2C-CO2H
ę	CH3CH= CHCH2CH2 COOH
-	+ top 1. and about of prace with the sound of the Budden with a
21	Physical appearance: a CANANA DE CONSUNTIONERS AND COMPENSATION
	All simple carbony ire acids are liquids up to SHE CLO art room temper
	Most other carbony to deids are solid at room temperature.
ĩi	Bailing points: only a Continent adiating to environment and
ī	This increases with moreasing relative molecular mass. Aromatic comborgh
ĥ	This increased with increasing relative molecular inges. Aromatic combody li acide are crystallime solid, and have higher melting points than their
ĥ	This increases with moreasing relative molecular mass. Aromatic comborgh
	This increased with increasing relative molecular mass. Aromatic combogyle acide are crystallime solids and have higher melting points than their alphatic counterpoints of compound comparable relative molecular mass
	This increased with increasing relative molecular mass. Aromatic combogyle acide are crystallime solids and have higher melting points than their alphatic counterpoints of compound comparable relative molecular mass
ÎN	This increased with increasing relative molecular mass. Aromatic combogyle acide are crystallime solide and have higher melting points than their alphatric counterports of compound comparable relative molecular mass Solubility: Lower molecular mass comparable acids with up to four conton atom
ÎN	This moreased with moreasing relative molecular mass. Aromatic combogyle acids are crystalline solids and have higher melting points than their alphatic counterposts of compound comparable relative molecular mass Solubility: Lower molecular mass comparable acids with up to four conton atom in their molecular one complete in water. This is due to their ability to
ÎN	This increased with increasing relative molecular mass. Aromatic combogle acide are crystallime solids and have higher melting points than their alphatric counterports of compound comparable relative molecular mass Solubility: Lower molecular mass comparylic acids with up to four conton atom in their molecules are complete in water. This is due to their ability to from hudronen bords with water molecules. As the relative molecular mass
Ĩ	This moreased with moreasing relative molecular mass. Aromatic combogly acide are crystallime solids and have higher melting points than their alphatric counterports of compared comparedle relative molecular mass Solubility: hower molecular mass comparedic acids with up to four conton atom in their molecular mass comparedic in water. This is due to their ability to from hydrogen bonds with water molecules. As the relative molecular mass increases, the water solubility reduces because the shucture becomes more
Ĩ	This marcased with marcasing relative molecular mass. Aromatic combogyle acids are arystallime solids and have higher melting points than their alphatric counterports of compound comparable relative molecular mass Solubility: Lower molecular mass combarylic acids with up to four conton atom in their molecular mass combarylic acids with up to four conton atom in their molecular mass combarylic acids with up to four conton atom in their molecular one soluble in water. This is due to their ability to form hydrogen bonds with water molecules. As the relative molecular mass increases, the water solubility reduces because the shucture becomes more hydrogen bonds.
-11	This mareased with mareasing relative molecular mass. Aromatic combogula acide are crystallime solids and have higher melting points than their alphatric counterposts of compared comparable relative molecular mass Solubility: Lower molecular mass comparylic acids with up to four conton atom in their molecules are complete in water. This is due to their ability to from hydrogen bonds with water molecules. As the relative molecular mass increases, the water solubility reduces because the shucture becomes more hydrocenton.
-11	This marcased with marcasing relative molecular mass. Aromatic combogula acide are crystallime solids and have higher melting points than their alphatric counterports of compared comparable relative molecular mass Solubility: Lower molecular mass comparylic acids with up to four conton atom in their molecules are complete in water. This is due to their ability to from hydrogen bonds with water molecules. As the relative molecular mass micreases, the water solubility reduces because the structure becomes more hydrocenton.
ill 39	This mareased with mareasing relative molecular mass. Aromatic combogula acide are crystallime solids and have higher melting points than their alphatric counterposts of compared comparable relative molecular mass Solubility: Lower molecular mass comparylic acids with up to four conton atom in their molecules are complete in water. This is due to their ability to from hydrogen bonds with water molecules. As the relative molecular mass increases, the water solubility reduces because the shucture becomes more hydrocenton.

HC = CH di Hoson Alason CH3 CHO -> CH3 COOH b tran petroleum Liquid phase an oxidation of Co-Cy alkanes, obtainable form petroleum at high temperature and pressure will give Co-Cy carbonylic geide with methampic, popanbic acid and butanois acide as by - products. Co-G Thigh temp/preserve Co-G conborgerio aside 4 Step 1: Dxidotion of primary alcohols and aldehyder using oxidizing agents (ie Kacr207 or KMNO2) in acidic solution RCH20H LOT excess and RCHO LOT > RCOOH Step 2: Hydrolysis of nitriles (syanides) or esters RCN + 2420 H+ RCOOH + NH+ (R= alky) or anyl radical) RCOOP HOMAT relien RCOOH + R'OH 5 i Reduction 4R COOH 1 34: ALHA (C2H5)20 (RCH20) AILi + 21: AIO2 + 4H2 14H20 ARCHZOH + AI (OH) + LIOH Decarboxylation CH3CH2CH2COONG + NOOH - fuse > CH3CH2CH3 + Na2CO3 Til Estenfication CH3CH2 CA2 COOH + CH3 CH2CH2OH L. H+ CH3 CH2 CH2CH2CH2CH2 CH3 + H20.