Im Joshua Bassey
hm 102
1809091004
inonautics Engineerig
Formic Acid - HCOOH
butyric Acid - CH2 CH2 CH2 COOH
Caproic Acid - CH3(CH2)4(CO04
Valeric Acid - HOO CH2 CH2 CH2 COOH
Physical appearance of carboxyla acids
The molecules of carboxylic acid are Polar
ue to the Presence of of two electronegative
eygen atoms. They also Participate in
idmaen bonding due to the Resence of
a carbonyl group (C=0) and the hydray
OUP.
Boiling Point Of Carboxylic acids
arboxylik acids have high boiling point

the hydrogen bond which source and hydrogen bonding can occur and mornales of acid to Produce a solublet of carboxylic acids ms all max with water in any Proportion my you make the two together, the energy the same as is needed to break he harden Londs In the Rive Riquids. There of the chronise Parporation from Amides E catalyst H or OH to form carboryic CH_CONH_ H30+ CH3(OOH + NHs Ethanore Acid & Homan de

relaxation from Esters

reidic hydrolysis of esters leads to the formation

carboxylic acids towever hydrolysis of the

Carl Survey by drolysis of the or produces carboxylates followed by acidifical CH3 CH2 OH2 COO C2H2 NaOH CH3 CH2 CH2 COONA # if H30+ C2 H5 OH CH2 CH2 CH2 COOH Reduction Of a Carboxylic Acid CH2CH2CH2COOH LIAHA > CH3CH2CH2CH2OH CH2 = CH - CHe - CO2H >200 > CH2 = CH-CH1/102 esteritication of carboxylic acid CH3-COOH+CH3CH2OH= CH3COCCHACH3+