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SUMMARY OF FLIP-FLOP APPLICATIONS AND COUNTERS AND 

REGISTERS 

FLIP FLOP APPLICATIONS 

       Edge-triggered (clocked) flip flops are versatile devices that can be used in a 

wide variety of applications including counting, storing of binary data, transferring 

binary data from one location to another and many more. Almost all of these 

applications utilize the FF’s clocked operation. 

FLIP FLOP SYNCHRONIZATION 

      Most digital systems are principally synchronous in their operation because 

most of the signals will change states in synchronism with the clock transitions. In 

many cases, however, there will be an external signal that is not synchronized to 

the clock; in other words, it is asynchronous. Asynchronous signals often occur as 

a result of human operators actuating an input switch at some random time relative 

to the clock signal. This randomness can produce unpredictable and undesirable 

results. 

DATA STORAGE AND TRANSFER 

     The most common use of flip-flops is for the storage of data or information. 

The data may represent numerical values (e.g. binary numbers, BCD-coded 

decimal numbers) or any of a wide variety of types of data that have been encoded 

in binary. These data are generally stored in groups of FF’s called registers. The 

operation most often performed on data that are stored in FF or a register is the 

data transfer operation. This involves the transfer of data from one FF or register to 

another. 
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Parallel Data Transfer- is data transfer from one register to another using D-type 

FF’S. The parallel transfer does not change the contents of the register that is the 

source of data. 

Serial Data Transfer: Shift Registers – A shift register is a group of FF’s arranged 

so that the binary numbers stored in the FF’s are shifted from one FF to the next 

for every clock pulse. On each NGT of the shift pulses, each FF output takes on the 

level that was present at the output of the FF on its left just prior to the NGT. In 

serial data transfer the contents of a register is transferred to another register one 

bit at a time. 

Hold Time Requirement- In this shift-register arrangement, it is necessary that the 

FF’s have a very smack hold time requirement because there are times when the J, 

K inputs are changing at about the same time as the CLK transition. 

Serial Transfer between Registers- on the NGT of each pulse, each FF takes on the 

value that was stored in the FF on its left prior to the occurrence of the pulse. The 

complete transfer of the three bits of data requires three shift pulses. 

Shift-left Operation- there is no general advantage of shifting in one direction over 

another; the direction chosen by a logic designee will often be dictated by the 

nature of the application.  

Parallel Versus Serial Transfer- in parallel transfer, all of the information is 

transferred simultaneously upon the occurrence of a single transfer command pulse 

no matter how many bits are been transferred. In serial transfer the complete 

transfer of N bits of information requires N clock pulses (three bits require three 

pulses, four bits require four pulses, etc.). Parallel transfer is obviously much faster 

than serial transfer using shift registers. In parallel transfer, the output of each FF 

in register X is connected to register Y, in serial transfer, only the last FF in 

register X is connected to register Y. In general, parallel transfers require more 

interconnections between the sending register(X) and the receiving register(Y) than 

those serial transfer. 

MOD NUMBER 

     The MOD number indicates the number of states in the counting sequence. The 

MOD number of a counter also indicates the frequency division obtained from the 

last FF. it is also equal to the number of states that the counter goes through in each 

complete  cycle before it recycles back to its starting state. It can be increased 

simply by adding FF’s to the counter. 
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ASYNCHRONOUS RIPPLE COUNTERS 

       In asynchronous ripple counters the FF’s do not change states in exact 

synchronism with the applied clock pulses. Thus there is a delay between the 

responses of successive FF’s. This type of counter is also referred to as a ripple 

counter because of the way the FF’s respond one after another in a kind of rippling 

effect. 

Signal Flow 

   It is conventional in circuit schematics to draw circuits (wherever possible) so 

that the signal flow is from left to right, with inputs on the left and outputs on the 

right. The CLK inputs of each FF are on the right, the outputs are on the left, we 

use this operation because it makes the counter operation easier to understand and 

follow (because the order of the FF’s is the same as the order of the bits in the 

binary number that the counter represents). 

Frequency Division 

     In the basic counter, each FF provides an output waveform that is exactly half 

the frequency of the wave form at its CLK input. In any counter, the signal at the 

output of the last FF (i.e., the MSB) will have a frequency equal to the input clock 

frequency divided by the MOD number of the counter. The first step in building a 

digital clock is to take the 60Hz signal and feed it into a Schmitt-trigger pulse-

shaping circuit to produce a square wave. 

Propagation Delay in Ripple Counters 

   Ripple counters are the simplest type of binary counters because they require the 

fewest components to produce a given counting operation. They do however, have 

one major drawback, which is caused by their basic principle of operation: each FF 

is triggered by the transition at the output of the preceding FF.  

 

Synchronous (Parallel) Counters 

    The problems encountered with ripple counters are caused by the accumulated 

FF propagation delays; stated another way, the FF’s do not change states 

simultaneously in synchronism with the input pulses. These limitations can be 

overcome by with the use of synchronous or parallel counters in which all of the 

FF’s are triggered simultaneously (in parallel) by the clock input pulses. 
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   Because the input pulses are applied to all the FF’s, some means must be used to 

control when an FF is to toggle and when it is to remain unaffected by a clock 

pulse. This is accomplished by using the J and K inputs. 

Differences between the circuit arrangements of synchronous counter with 

asynchronous counter 

1. The CLK inputs of all the FF’s are connected together so that the input clock 

signal is applied to each FF simultaneously. 

2. Only flip-flop A, the LSB< has its J and K inputs permanently at the HIGH 

level. The J, K inputs of the other FF’s are driven by some combination of FF 

outputs. 

3. The synchronous counter requires more circuitry than does the asynchronous 

counter. 

Circuit Operation 

     For this circuit to count properly, on a given NGT of the clock, only those FF’s 

that are supposed to toggle on that NGT should have J=K=1 when that NGT 

occurs. The counting sequence shows that the A flip-flop must change states at 

each NGT. For this reason, it’s J and K inputs are permanently HIGH so that it will 

toggle on each NGT of the clock input. 

   The basic principle for constructing a synchronous counter can therefore be 

stated as follows: 

   Each FF should have its J and K inputs connected so that they are HIGH only 

when the outputs of all lower-order FF’s are in the HIGH state. 

Advantage of Synchronous Counters over Asynchronous  

    In a parallel counter, all of the FF’s will change states simultaneously; that is, 

they are all synchronized to the NGT’s of the input clock pulses. Thus, unlike the 

asynchronous counters, the propagation delays of the FF’s do not add together to 

produce the overall delay. Instead, the total response time of a synchronous counter 

is the time it takes one FF to toggle plus the time for the new logic levels to 

propagate through a single AND gate to reach the J, K inputs. 

    This total delay is the same no matter how many FF’s are in the counter, and it 

will generally be much lower than with an asynchronous counter with the same 

number of FF’s. Thus a synchronous counter can operate at a much higher input 
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frequency. Of course, the circuitry of the synchronous counter is more complex 

than that of the asynchronous counter. 

Actual ICs 

  There are many synchronous IC counters in both the TTL and the CMOS logic 

families. Some of the most commonly used devices are: 

74ALS160/162, 74HC160/162: synchronous decade counters 

74ALS161/163, 74HC161/163: synchronous MOD-16 counters 

Display Counter States 

   Sometimes during normal operation, and very often during testing, it is necessary 

to have a visible display of how a counter is changing states in response to the 

input pulses. 

Decade Counters/BCD Counters 

   The MOD-10 counter is also referred to as decade counter. In fact, a decade 

counter is any counter that has 10 distinct states, no matter what the sequence. A 

decade counter which counts in sequence from 0000(zero) through 1001(decimal 

9), is also commonly called a BCD counter because it uses only the 10 BCD code 

groups 0000, 0001,…, 1000, and 1001. To reiterate, any MOD-10 counter is a 

decade counter, and any decade counter that counts bin binary from 0000 to 1001 

is a BCD counter. 

    Decade counters, especially the BCD type, find widespread use in applications 

where pulses or events are to be counted and the results displayed on some type of 

decimal numerical readout. A decade counter is also often used for dividing a pulse 

frequency exactly by 10. The input pulses are applied to the parallel clock inputs, 

and the output pulses are taken from the output of flip-flop D, which has one-tenth 

the frequency of the input signal. 

Synchronous Down and Up/Down Counters 

    When you use the output of lower-order FF’s to control the toggling of each FF 

creates a synchronous up counter. A synchronous down computer is constructed in 

a similar manner except that we use the inverted FF outputs to control the higher 

order J, K inputs.  

Presettable Counters 
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     Many synchronous(parallel) counters that are available as IC’s are designed to 

be presettable; in other words, they can be preset to any Desired starting count 

either asynchronously(independent of the clock signal) or synchronously (on the 

active transition of the clock signal). This presetting operation is also referred to as 

parallel loading the counter. 

Synchronous Presetting 

  Many IC parallel counters use synchronous presetting whereby the counter is 

preset on the active transition of the same clock signal that is used for counting. 

The logic level on the parallel load control input determines if the counter is preset 

with the applied input data at the next active clock transition 

Examples of IC counters that use synchronous presetting include the 

TTL7ALS160, 74ALS161, 74ALS162, AND 74ALS163 and their CMOS 

equivalents, 74HC160, 74HC161, 74HC162, and 74HC163. 

IC Synchronous Counters 

The 74ALS160-163/74HC160-163 Series 

     The 74ALS160 and 74ALS161 each has an asynchronous clear input. The clear 

input has priority over all other functions for this series of IC counters. Another 

priority function available in this series of IC counters is the parallel loading of 

data into the counters flip-flops. This series of IC counter chips has one or more 

output pin, RCO. The function of this active-HGH output is to detect (decode) the 

last or terminal state of the counter. The terminal state for a decade counter is 

1001(9), while the terminal state for a MOD-16 counter is 111(15). ENT, the 

primary enable input, also controls the operation of RCO. ENT must be HIGH for 

the counter to indicate with the RCO output that it has reached its terminal state. 

The 74ALS190-191/74HC190-191 Series 

    The only difference between the two part numbers is the counters modulus. The 

74ALS190 is a MOD-10 counter and the 7ALS191 is a MOD-16 binary counter. 

Both chips are up/down counters and have an asynchronous, active-LOW load 

input.  

Multistage Arrangement 

    Many standard IC counters have been designed to make it easy to connect 

multiple chips together to create circuits with a higher counting range. All of the 
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counter chips presented in this section can be simply connected in a multistage or 

cascading arrangement. 

Decoding a Counter 

   Digital counters are often used in applications where the count represented by the 

states of the FF’s must somehow be determined or displayed. One of the simplest 

means for displaying the contents of a counter involves just connecting the output 

of each FF to a small indicator LED. IN THIS WAY THE STATES OF THE FF’s 

are visibly represented by the LEDs (on=1, off=0), and the count can be mentally 

determined by decoding the binary states of the LEDS. For instance, suppose that 

this method is used for a BCD counter and the states of the LEDs are off-on-on-

off, respectively. This would represent 0110, which we would mentally decode as 

decimal 6. Other combinations of LED states would represent the other possible 

counts.   

      The indicator LED method becomes inconvenient as the size (number of bits) 

of the counter increases because it is much harder to decode the displayed results 

mentally. For this reason it is preferable to develop a means for electronically 

decoding the contents of a counter and displaying the results in a form that is 

immediately recognizable and requires no mental operations. 

   An even more important reason for electronic decoding of a counter occurs 

because of the many applications in which counters are used to control the timing 

or sequencing of operations automatically without human intervention. For 

example, a certain system operation might have to be initiated when a counter 

reaches the 101100 state. A logic circuit can be used to decode for or detect when 

this particular count is present and then initiate the operation. Many operations 

may have to be controlled in this manner in a digital system. Clearly, human 

intervention in this process would be undesirable except in extremely slow 

systems. 

Active-High Decoding 

  A MOD-X counter has X different states; each state is a particular pattern of 0s 

and 1s stored in the stored in the counter FF’s. A decoding network is a logic 

circuit that generates X different outputs, each of which detects (decodes) the 

presence of one particular state of the counter. The decoder outputs can be 

designed to produce either a HIGH or a LOW level when the detection occurs. An 

active HIGH decoder produces HIGH outputs to indicate detection. 
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Active-LOW Decoding 

   If NAND gates are used in place of AND gates, the decoder outputs produce a 

normally HIGH signal, which goes LOW only when the number being decoded 

occurs. Both types of decoders are used, depending on the type of circuits being 

driven by the decoder outputs. 

BCD Counter Decoding 

   BCD decoders provide 10 outputs corresponding to the decimal digits 0 through 

9 and represented by the states of the counter FFs. These 10 outputs can be used to 

control 10 individual indicator LEDs for a visual display. More often, instead of 

using 10 separate LED’s, a single display device is used to display the decimal 

numbers 0 through 9. One class of decimal displays contains seven small segments 

made of material (usually LEDs or liquid-crystal displays) that either emits light or 

reflects ambient light. The BCD decoder outputs control which segments are 

illuminated in order to produce a pattern representing one of the decimal digits. 

Analyzing Synchronous Counters 

   Synchronous counter circuits can be custom-designed to generate any desired 

count sequence. We can use just the synchronous inputs that are applied to the 

individual flip-flops to produce the counter’s sequence. By not using asynchronous 

FF controls, such as the clears, to change the counter’s sequence, we will never 

have to deal with transient states and possible glitches in output waveforms. The 

process of designing completely synchronous counters will be investigated in the 

next section. First, let’s see how to analyze a counter design of this type predicting 

the FF control inputs for each state of the counter. A PRESENT state/NEXT state 

is a very useful toll in this process. The first step is to wire the logic expression for 

each FF control input. Next assume a PRESENT state for the counter and apply 

that combination of bits to the control logic expressions. The outputs from the 

control expressions will allow us to predict the commands to each FF and the 

resulting NEXT state for the counter after clocking. Repeat the analysis process 

until the entire count sequence is determined. A self-correcting counter is one in 

which normally unused states will all somehow return to the normal sequence, the 

counter is said to be not self-correcting. The gating resources for most PLDs 

actually consists of sets of AND-OR circuit arrangements and the SOP logic 

expression more accurately describes the internal circuit implementation. 

However, we can see that the expressions have been greatly simplified by using the 
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XOR function. This leads us to predict correctly that to create a MOD-16 binary 

counter with D flip-flops, we would need a fourth FF. 

Synchronous Counter Design 

  Many different counter arrangements are available as ICs-asynchronous, 

synchronous, and combined asynchronous/synchronous. Most of these count in a 

normal binary or BCD count sequence, although their counting sequences can be 

somewhat altered using the clearing or loading methods we demonstrated for the 

74ALS160-163 and 74ALS190-191 series of ICs. There are situations, however, 

where a custom counter is required that follows a sequence that is not a regular 

binary count pattern, for example, 000, 010, 101, 001, 110, 000,…   The process of 

designing a synchronous counter thus becomes one of designing the logic circuits 

that decode the various states of the counter to supply the proper logic levels to 

each J and K input at the correct time. The inputs to these decoder circuits will 

come from the outputs of one or more of the FF’s. 

   Stepper Motor Control 

   A stepper motor is a motor that rotates in steps, typically 15 degrees per step, 

rather than in a continuous motion. Magnetic coils or windings within the motor 

must be energized and deenergized in a specific sequence in order to produce this 

stepping action. Digital signals are normally used to control the current in each of 

the motors coils. Stepper motors are used extensively in situations where precise 

position control is needed, such as in positioning of read/write heads on magnetic 

disks, in controlling print heads in printers, and in robots. 

Synchronous Counter Design with D FF 

   Historically, J-K flip-flops have been used to implement counters because the 

logic circuits needed for the J and K inputs are usually simpler than the logic 

circuits needed to control an equivalent synchronous counter using D flip-flops. 

When designing counters that will be implemented in PLD’s, where abundant 

gates are generally available, it makes sense to use D flip-flops instead of J-Ks.  

  Designing counter circuits using D flip-flops is even easier than using J-K flip-

flops. 

Integrated-Circuit Registers 
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  The various types of registers can be classified according to the manner in which 

data can be entered into the register for storage and the manner in which data are 

outputted from the register. The various classifications are listed below: 

1. Parallel in/parallel out (PIPO) 

2. Serial in/serial out (SISO) 

3. Parallel in/serial out (PISO) 

4. Serial in/parallel out (SIPO) 

Each of these types and several variations are available in IC form so that a logic 

designer can usually find exactly what is required for a given application. 

Parallel IN/Parallel Out- The 74ALS174/74HC174 

    A group of flip-flops that can store multiple bits simultaneously and in which all 

bits of the stored binary value are directly available is referred to as a parallel 

in/parallel out register. 

   The 74ALS174 is normally used for synchronous parallel data transfer whereby 

the logic levels present at the D inputs are transferred to the corresponding Q 

outputs when a PGT occurs at the clock CP. This IC, however, can be wired for 

serial data transfer. 

Serial In/Serial Out- The 74ALS166/74HC166 

   A serial in/serial out shift register will have data loaded into it one bit at a time. 

The data will move one bit at a time with each clock pulse through the set of flip-

flops toward the other end of the register. With continued clocking, the data will 

then exit the register one bit at a time in the same order as it was originally loaded. 

The 74HC166 (and also the 74ALS166) can be used as a serial in/serial out 

register. The logic diagram and schematic symbol for the 74HC166 is an eight-bit 

shift register of which only FF OH is accessible. The serial data is input on SER 

and will be stored in FF QA. The serial output isobtained at the other end of the 

shift register. The synchronous serial shifting and parallel loading functions can be 

inhibited (disabled) by applying a HIGH to the CLK INH control input. The 

register also has an active-LOW, asynchronous clear input (CLR). 

A shift register is often used as a way to delay a digital signal by an integral 

number of clock cycles. The digital signal is applied to the shift register’s serial 

input and is shifted through the shift register by successive clock pulses until it 
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reaches the end of the shift register, where it appears as the output signal. This 

method for delaying the effect of a digital signal is common in the digital 

communications field. For instance, the digital signal might be the digitized 

version of an audio signal that is to be delayed before it is transmitted. 

Parallel In/Serial Out- The 74ALS165/74HC165 

  This IC is an eight-bit parallel in/serial out register. CP is the clock input used for 

the shifting operation. The clock inhibit input, CP INH is used to inhibit the effect 

of the CP input. The shift/load input, SH/LD, controls which operation is taking 

place- shifting or parallel loading.  

The serial shifting function will always be synchronous, since the clock is required 

to ensure that the input data moves only one bit at a time with each appropriate 

clocking edge. 

Serial In/Parallel Out- The 74ALS164/74HC164 

    The logic diagram for the 74ALS164/74HC164 is an eight-bit serial in/parallel 

out shift register with each FF output externally accessible. Instead of a single 

serial input, an AND gate combines inputs A and B to produce the serial input to 

flip-flop Q. 

  The shift operation occurs on the PGTs of the clock input CP. The MR input 

provides asynchronous resetting of all FFs on a low level. 

The following is a list of some other register IC’s that are variations on those 

already presented: 

74194/ALS194/HC194: This is a four-bit bidirectional universal shift register IC 

that can perform shift-left, shift-right, parallel in, parallel out operations. These 

operations are selected by a two-bit mode select code applied as inputs to the 

device. 

74373/ALS373/HC373/HCT373: This is an eight-bit (octal) parallel in/parallel out 

register containing eight D latches with tristate outputs. A tristate output is a 

special type of logic circuit output that allows device outputs to be tied together 

safely.  

74374/ALS374/HC374/HCT374: This is an eight-bit (octal) parallel in/parallel out 

register containing eight edge- triggered D flip-flops with tristate outputs. 
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The IC registers that have been represented here are representative of the various 

types that are commercially available. Although there are many variations on these 

basic registers, most of them should now be relatively easy to understand from the 

manufacturer’s data sheets. 

Shift Register Counters 

  Shift register counters use feedback, which means that the output of the last FF in 

the register is connected back to the first FF in some way. 

Ring Counter 

   The simplest shift-register counter is essentially a circulating shift register 

connected so that the last FF shifts its value into the first FF. This arrangement is 

shown using D-type FFs (J-K flip-flops can also be used). The FFs are connected 

so that information shifts from left to right and back around. In most cases, only a 

single 1 is in the register, and it is made to circulate around the register as long as 

clock pulses are applied. For this reason, it is called a ring counter. 

  The waveforms, sequence table, and state diagram show the various states of the 

FFs as pulses are applied, assuming a starting state of Q3 = 1 and Q2 = Q1 =Q0. 

After the first pulse, the 1 has shifted from Q3 to Q2 so that the counter is in the 

0100 state. The second pulse produces the 0100 state, and the third pulse produces 

the 0001 state. On the fourth clock pulse, the 1 from Q0 is transferred to Q3, 

resulting in the 1000 state, which is, of course, the initial state. Subsequent pulses 

cause the sequence to repeat. 

  The counter functions as MOD-4 counter because it has four distinct states before 

the sequence repeats. Although this circuit does not progress through the normal 

binary counting sequence, it is still a counter because each count corresponds to a 

unique set of FF states. Each FF output waveform has a frequency equal to one-

fourth of the clock frequency because this is a MOD-4 ring counter. Ring counters 

can be constructed for any desired MOD number. 

 


