$$
\begin{aligned}
& \frac{5 y=e^{x} \sin 2 x-e^{x} \cos 2 x+c}{4} \\
& 4 \\
& 5 y=\frac{e^{x} \sin 2 x}{4}-2 e^{x} \frac{\cos 2 x+c}{2} \\
& y=e^{x} \sin 2 x-2 e^{x} \cos 2 x+c \\
& 5
\end{aligned}
$$

Putting the Value of y back

$$
<\int e^{x} \sin 2 x=e^{x} \sin 2 x-\frac{2 e^{x}}{5} \cos 2 x+c
$$

$$
\begin{aligned}
& d^{2} y=2 e^{2 x}+\frac{d}{d x}\left(2 x e^{2 x}\right) \\
& \frac{d x^{2}}{d x} \\
& =2 e^{2 x}+2 e^{2 x}+4 x e^{2 x} \\
& <d x^{2}=4 e^{2 x}+4 x e^{2 x} \\
& <\frac{d^{2} y}{d x^{2}}=4 e^{2 x}+4 x e^{2 x} \\
& 4 \frac{d y}{d x}=4\left(e^{2 x}+2 x e^{2 x}\right) \Rightarrow 4 e^{2 x}+8 x e^{2 x} \\
& 4 y=4\left(x e^{2 x}\right) \Rightarrow 4 x e^{2 x} \\
& \text { Then } \frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+4 y=0 \\
& \left(4 e^{2 x}+4 x e^{2 x}\right)-\left(4 e^{2 x}+8 x e^{2 x}\right)+4 x e^{2 x}=0 \\
& <d^{2} y-4 d y+4 y=0 \\
& d^{2}-4 \frac{d y}{d x}
\end{aligned}
$$

(3)

$$
\begin{aligned}
& \int e^{x} \sin 2 x \\
& v=e^{x} \text { and } d u=\sin 2 x \\
& d v=e^{x} d x \cdot u=-\cos 2 x \\
& 2 \\
& \int v d u=u v-\operatorname{Sudu} \\
& \int e^{x} \sin 2 x=-e^{x} \cos 2 x+\int e^{x} \cos 2 x \\
& 2 \\
& \int e^{x} \cos 2 x=\frac{1}{2} \int e^{x} \cos 2 x \\
& \int e^{x} \cos 2 x=\left(\frac{e^{x} \sin 2 x}{2}-\int e^{x} \sin 2 x\right] \frac{1}{2} \\
& L \int e^{x} \sin 2 x=e^{x} \frac{\sin 2 x}{4}-e^{x} \cos 2 x-2
\end{aligned}
$$

Let $\int e^{x} \sin 2 x-e^{x} \cos 2 x+c$ be y

$$
y=\frac{e^{x} \sin 2 x}{4}-\frac{e^{x} \cos 2 x}{2}-\frac{y}{4}+c
$$

$$
\text { 2. } y=x e^{2 x}
$$

$$
\begin{aligned}
& \text { naME Laval abe bubal } \\
& \text { Course: mate } 104 \\
& \begin{array}{l}
\text { Ocpostment: suIt Engineering } \\
\text { Mairieno: in |ENG OS } / 027
\end{array} \\
& \text { MATH } 104 \text { Assignment } \\
& \text { Answers } \\
& y=2 \cos 3 x \text {. } \\
& d y x^{3} \\
& d x \text { let } u=2 \cos 3 x, \quad y=x^{3} \\
& \frac{d u}{d x}=-6 \sin 3 x \frac{d y}{d x}=3 x^{2} \\
& \frac{d y}{d x}=v \frac{d u}{d x}-u \frac{d y}{d x} \\
& \Rightarrow x^{3}(-6 \sin 3 x)-2 \cos 3 x\left(3 x^{2}\right) \\
& \frac{d y}{d x}=-6 x^{2} \frac{C x \sin 3 x-\cos 3 x}{x^{6}} \\
& \text { Show that } \frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+4 y=0 \\
& \text { Let } u=x, \quad u=e^{2 x} \\
& \frac{d u}{d x}=1 \quad \frac{d u}{d x}=2 e^{2 x} \\
& <\frac{d y}{d x} \Rightarrow e^{2 x}+2 x e^{2 x} \\
& \frac{d y}{d x}=e^{2 x}+2 x e^{2 x} \\
& \text { let } U= \\
& \frac{d y}{d x}=e^{2 x}+2 x^{e^{2 x}}
\end{aligned}
$$

