UHUEGBULEM CHINONSO NNAMDI

18/SCI01/093

MAT 204 ASSIGNMENT

1. Define a vector space

A vector space over a real field F is a set that is closed under finite vector addition and scalar multiplication.
2. Show that the vectors $A=(1,1,1), B=(1,2,3), C=(1,5,8)$ spans R^{3}.

Solution

$$
\begin{array}{ll}
\alpha+\beta+\delta=a & -(1) \\
\alpha+2 \beta+5 \delta=b & -(2) \\
\alpha+3 \beta+8 \delta=c
\end{array}
$$

from eqn (1)
$\alpha=a-\beta-\delta$
put (4) in (2) and (3)
$\alpha+2 \beta+5 \delta=b$
$(a-\beta-\delta)+2 \beta+5 \delta=b$
$a-\beta-\delta+2 \beta+5 \delta=b$
$a+\beta+4 \delta=b-a \quad-(5)$
$\alpha+3 \beta+8 \delta=c$
$(a-\beta-\delta)+3 \beta+8 \delta=c$
$a-\beta-\delta+3 \beta+8 \delta=c$
$a+2 \beta+7 \delta=c-a \quad-(6)$
combine equation (5) and (6)

$$
\begin{align*}
& \beta+4 \delta=\mathrm{b}-\mathrm{a} \\
& 2 \beta+7 \delta=\mathrm{c}-\mathrm{a} \tag{6}
\end{align*}
$$

Multiply equation (5) by 2 and equation (6) by 1

$$
\begin{gathered}
=2 \beta+8 \delta=2 b-2 a \\
-2 \beta+7 \delta=c-a \\
\delta=(2 b-2 a)-(c-a) \\
\delta=2 b-2 a-c+a \\
\delta=2 b-a-c \\
\delta=-a+2 b-c
\end{gathered}
$$

From equation (5)
$\beta+4 \delta=b-a$
Substitute the value of δ

$$
\begin{aligned}
&= \beta+4(-a+2 b-c)=b-a \\
& \beta-4 a+8 b-4 c=b-a \\
& \beta=4 a-8 b+4 c=b-a \\
& \beta=3 a-7 b+4 c
\end{aligned}
$$

From equation (4)

$$
\alpha=a-\beta-\delta
$$

$$
\alpha=a-(3 a-7 b+4 c)-(-a+2 b-c)
$$

$$
\alpha=a-3 a+7 b-4 c+a-2 b+c
$$

$$
=-a+5 b-3 c
$$

3. Are the vectors $A=(1,2,3), Q=(3,2,1), R=(0,0,1)$ a basis for R^{3} ?

Solution

First check for linear dependency

From eqn (1)
$\alpha+\beta=0$

Substitute eqn (1) in (2) and (3)

$$
\begin{gathered}
2 \alpha+2 \beta=0 \\
2(-3 \beta)+2 \beta=0 \\
-6 \beta+2 \beta=0 \\
-4 \beta=0 \\
\beta=0
\end{gathered}
$$

Substitute values of β into (2)

$$
\begin{aligned}
& \alpha+3 \beta=0 \\
& \alpha+0=0 \\
& \alpha=0
\end{aligned}
$$

Substitute α and β into equation (3)
$3 \alpha+\beta+\delta=0$
$3(0)+0+\delta=0$
$\delta=0$

$$
\begin{aligned}
& \alpha+3 \beta=\mathrm{p} \quad-(1) \\
& 2 \alpha+2 \beta=\mathrm{q} \quad-(2) \\
& 3 \alpha+\beta+\delta=r \quad-(3)
\end{aligned}
$$

Combine equations (1) and (2)

$$
\alpha+3 \beta=\mathrm{p} \quad \mathrm{x} 1
$$

$2 \alpha+2 \beta=q \times 2$
Multiply equations (1) by 2 and (2) by 1

$$
\begin{array}{rl}
2 \alpha+6 \beta & =2 p \\
-2 \alpha+2 \beta & =q \\
\hline 4 \beta & =2 p-q \\
4 & 4 \\
\beta= & \frac{2 p-q}{4}
\end{array}
$$

$$
\begin{aligned}
& \text { Substitute value of } \beta \text { into (1) } \\
& \alpha+3 \beta=p \\
& \left.\alpha+3 \frac{2 p-q}{4}\right)=p \\
& \alpha+\left(\frac{6 p-3 q}{4}\right)=p \\
& \alpha=\frac{p}{1}-\left(\frac{6 p-3 q}{4}\right) \\
& \alpha=\frac{4 p-(6 p-3 q)}{4} \\
& \alpha=\frac{4 p-6 p+3 q}{4}
\end{aligned}
$$

$$
\alpha=\frac{-2 p+3 q}{4}
$$

In equation (2)
$3 \alpha+\beta+\delta=r$
$\delta=r-3 \alpha-\beta$
$\delta=r-\left\{\begin{array}{c}-2 p+3 q \\ 4\end{array}\right)-\binom{2 p-q}{4}$
$\delta=\frac{4 r-3(-2 p+3 q)-(2 p-q)}{4}$
$\delta=\frac{4 r+6 p-9 q-2 p+q}{4}$
$\delta=\frac{4 r+4 p-8 q}{4}$
$\delta=\frac{4 p-8 q+4 r}{4}$

