NAME: AKANO ONYEKACHI M. MAT/NO: 18/SCIO1/012
 COURSE CD: MAT204
 LVL: 200
 DEPRMNT: COMPUTER SCIENCE ASSIGNMENT:

1) Define the following: (I) LINEAR COMBINATION OF VECTORS (II) LINEAR DEPENDENCE OF VECTORS
2) Prove that the following SET IS A SPAMMING SET R^{3}. $\mathrm{u}=(1,0,-1), \mathrm{v}=(2,1,3) \& \mathrm{w}=(1,1,-$ 4).
3) State 4 axioms of vector SPACE.

ANSWER

1i) Linear combination of two or more vector is the vector obtained
from adding two or more vectors (with different directions) which are
multiplied by the scalar values
1ii) A set of vector is said to be linearly dependent if at least one of the vectors in the set can be defined as a linear combination of the vectors.

3i) $U+V=V+U$
$3 i i) \mid \bullet U=U$
$3 i i i) C \bullet(d \bullet u)=(c d) u$
3iv) $(\mathrm{U}+\mathrm{V})+\mathrm{W}=\mathrm{U}+(\mathrm{V}+\mathrm{W})$

from eas (i)
2f $\gamma=a-\alpha-2 \beta$
subinto ε
$\beta+a-\alpha-2 \beta=b$
$\beta-\alpha-2 \beta=b-a$
$-\beta-\alpha=b-a$
Subinto evu(3)
$-2+3 \beta-4(\alpha-\alpha-2 \beta)=C$
$-2+3 \beta-4 a+4 \alpha+6 \beta=c$
$-\alpha+3 \beta-4 a+4 \alpha+d \beta=c$
2)

$$
\begin{aligned}
& -\alpha+4 \alpha+3 \beta+6 \beta=4+c+4 a \\
& 3 \alpha+9 \beta=c+4 a \ldots \text { eq }(6) \\
& 60 \\
& -\beta-\alpha=b-a \\
& -3 \alpha+9 \beta=c+4 a \\
& -4 \beta-4 \alpha-10 \beta=(b-a)-(+4 a)
\end{aligned}
$$

busing elimation nuthod and eliminated

$$
\begin{aligned}
6 B & =3 b-c-7 a \\
B & =\frac{3 b-c-7 a}{6}
\end{aligned}
$$

from earn (6)

$$
3 d+98=c+4 d c+4 a
$$

