## NAME: AKANO ONYEKACHI M.

 MAT/NO: 18/SCIO1/012COURSE CD: MAT204

## LVL: 200

DEPRMNT: COMPUTER SCIENCE

## ASSIGNMENT

## SINGULAR MATRICES:

Singular matrix is a square matrix which is invertible. Alternatively, a matrix is singular if and only if it has a determinant of 0 .

Singular matrices are the square matrices which have zero determinant. This means that you won't be able to invert such a matrix look more technically it means that the rank of such a matrix is less than its order. Since you have got a zero determinant. Linear transformation represented by singular matrices are not isomorphisms. This is because homomorphisms represented by such matrices are non-invertible.

## Examples:

$2 \times 2$ by matrix
$3 \times 3$ matrix
NON-SINGULAR MATRIX
Non-singular matrix is a square one whose determinant is not zero. Thus a non-singular matrix is also as a full matrix.

## EXAMPLES

Determinant of $(6,5)(5,3)$

