NAME: AWALA DIVINE PAUL

MATRIC NO: 19/ENG05/016

DEPARTMENT: MECHATRONICS ENGINEERING.

COURSE CODE: MAT 102

COVID-19 HOLIDAY ASSIGNMENT

Ouestion 1

Find the point of intersection of the following line on the circle x - y - 14 = 0 and $x^2 + y^2 - 6x + 8y = 0$

SOLUTION

Equation of line: y = x - 14(i)

Equation of circle: $x^2 + y^2 - 6x + 8y = 0$ (ii)

Substituting equation (i) in equation (ii) gives;

$$= x^2 + (x - 14)^2 - 6x + 8(x - 14) = 0$$

$$= x^2 + (x - 14)(x - 14) - 6x + 8x - 112 = 0$$

$$= x^{2} + x^{2} - 14x - 14x + 196 - 6x + 8x - 112 = 2x^{2} - 28x + 196 + 2x - 112 = 0$$

$$=2x^2-26x+84=0$$

$$= x^2 - 13x + 42 = 0$$

$$(x-6)(x-7)=0$$

$$x = 7.6$$

Substituting the values of x in equation (i) gives;

$$y = x - 14$$

$$y = -7, -8$$

 \therefore The points of intersection are (7, -7) and (6, -8)

Question 2

Find the point of intersection of the following line on the circle 2x + y - 10 = 0 and $x^2 + y^2 + 4x - 6y = 0$

SOLUTION

Equation of line: y = -2x + 10(i)

Equation of circle: $x^2 + y^2 + 4x - 6y = 0$ (ii)

Substituting equation (i) in equation (ii) gives;

$$= x^2 + (-2x + 10)^2 + 4x - 6(-2x + 10) = 0$$

$$= x^{2} + (-2x + 10)(-2x + 10) - 6x + 8x - 112 = 0$$

$$= x^2 + 4x^2 - 20x - 20x + 100 + 4x + 12x - 60 = 0$$

$$=5x^2-40x+100+16x-60=0$$

$$=5x^2-24x+40=0$$

Using formula:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2}$$

$$x = \frac{-(-24) \pm \sqrt{(-24)^2 - 4(5)(40)}}{2(5)}$$

$$x = \frac{24 \pm \sqrt{576 - 800}}{2(5)}$$

$$24 \pm \sqrt{-224}$$

$$x = \frac{24 \pm \sqrt{-22}}{2(5)}$$

It cannot factorize fully.

The discriminant $b^2 - 4ac = -224$, which is a negative. This means that there are no real roots.

: The line and circle do not intersect. The line y = -2x + 10 misses the circle.

Question 3

Find the point of intersection of the following line on the circle x - 5y - 2 = 0 and $x^2 + 25y^2 - 6xy - 16 = 0$

SOLUTION

Equation of line: x - 5y - 2 = 0

$$5y = x - 2$$

$$y = \frac{x-2}{5}$$
(i)

Equation of circle: $x^2 + 25y^2 - 6xy - 16 = 0$ (ii)

$$= x^{2} + 25\left(\frac{x-2}{5}\right)^{2} - 6x\left(\frac{x-2}{5}\right) - 16 = 0$$

$$= x^{2} + 25\left(\frac{x-2}{5}\right)\left(\frac{x-2}{5}\right) - \left(\frac{6x^{2}-12x}{5}\right) - 16 = 0$$

$$= x^2 + 25\left(\frac{x^2 - 4x + 4}{25}\right) - \left(\frac{6x^2 - 12x}{5}\right) - 16 = 0$$

$$= x^2 + x^2 - 4x + 4 - \left(\frac{6x^2 - 12x}{5}\right) - 16 = 0$$

$$= x^2 + x^2 - 4x + 4 - \frac{6x^2}{5} + \frac{12x}{5} - 16 = 0$$

$$=2x^2 - \frac{6x^2}{5} - 4x + \frac{12x}{5} + 4 - 16 = 0$$

$$= \frac{10x^2 - 6x^2}{5} - \frac{20x + 12x}{5} - 12 = 0$$

$$=\frac{4x^2}{5}-\frac{32x}{5}-12=0\times 5$$

$$= 4x^2 - 32x - 60 = 0 \div 4$$

$$= x^2 - 8x - 15 = 0$$

$$(x-3)(x-5)=0$$

$$x = 3, 5$$

Substituting the values of *x* in equation (i) gives;

$$y = \frac{x - 2}{5}$$
$$y = \frac{1}{5}, \frac{3}{5}$$

 \therefore The points of intersection are (3, $\frac{1}{5}$) and (5, $\frac{3}{5}$)