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Abstract 

 In recent years, Permanent Magnet Synchronous Motors (PMSM) have gained a lot of 

attention due to their high efficiency and accuracy in high precision applications. This paper 

briefly discusses the PMSM, with its differences to a conventional synchronous motor. It then 

gives a deep dive into two methods of modelling a PMSM, which are, the Parks transformation 

and the embedded phase domain model. 

1. Introduction 

Having a good knowledge of electrical machines is a prerogative for the successful work of 

electrical engineers. Knowledge of the equivalent schemes in steady states and mechanical 

characteristics is required for selecting a machine which would be adequate for a particular 

application, for designing systems containing electrical machines, as well as for solving the 

problems which may arise in industry and power engineering. Knowledge of the dynamic 

model of electrical machines is necessary for solving the control problems of generators and 

motors, for designing protection and monitoring systems, for determining the structures and 

control parameters in robotics, as well as for solving the problems in automation of production, 

electrical vehicles, and other similar applications (Slovodan, 2013). 

Motors are electrical machines that convert electrical energy into mechanical energy. The 

major classifications of AC motors are asynchronous and synchronous motors. Asynchronous 

motors are singly excited machines, that is, stator windings are connected to an AC supply 

which create a rotating magnetic field which turns the rotor via mutual induction. They are also 

known as induction machines. On the other hand, a synchronous motor requires AC supply for 
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the stator windings and DC supply for the rotor windings (Balashanmugham et al, 2016). The 

motor speed is determined by the AC supply and the number of poles of the synchronous motor. 

Synchronous motors are capable of running at constant speed irrespective of the load acting on 

them. They are highly efficient and used in high precision application. Synchronous machines 

can be classified depending on the rotor that produces its magnetic field. One of these 

classifications is the Permanent Magnet Synchronous Motors (PMSM). 

In recent years, Permanent Magnet Synchronous Motors (PMSMs) are increasingly applied in 

several areas such as traction, automobiles, robotics and aerospace technology (Bowen et al, 

2012). The PMSM consists of conventional three phase windings in the stator and permanent 

magnets in the rotor. The purpose of the field windings in the conventional synchronous 

machine is done by permanent magnets in PMSM. The conventional synchronous machine 

requires AC and DC supply, whereas the PMSM requires only AC supply for its operation. 

One of the greatest advantages of PMSM over its counterpart is the removal of dc supply for 

field excitation. 

This paper presents two different approaches to model the permanent magnet synchronous 

machine in RTDS, the traditional dq0 model (which is also known as Parks Transform) of the 

machine and the embedded phase domain model.  

2. Parks Transform Modeling of PMSM 

To model a PMSM using Parks Transform method there are two steps involved which are 

acquiring the operating equations of a PMSM and applying the Parks Transformation to the 

equations 

2.1 Acquiring Operating Equations 

The motor axis has been developed using d-q rotor reference frame theory as shown in Figure 

2.1. At any particular time, t, the rotor reference axis makes an angle θr with the fixed stator 
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axis and the rotating stator mmf creates an angle α with the rotor d axis (Balashanmugham et 

al, 2016). It is viewed that at any time t, the stator mmf rotates at the same speed as that of the 

rotor axis. The following assumptions are made for the modeling of the PMSM without damper 

windings. 

i. Saturation is neglected 

ii. The induced EMF is sinusoidal 

iii. Hysteresis and eddy current losses are negligible  

iv. There is no field current dynamics 

 

Figure 2.1. Motor Axis (Balashanmugham et al, 2016) 

Voltage equations from the model are given by, 

𝑉𝑞 =  𝑅𝑠𝑖𝑞 + 𝜔𝑟𝜆𝑑 + 𝜌𝜆𝑞        (1) 

𝑉𝑑 =  𝑅𝑠𝑖𝑑 − 𝜔𝑟𝜆𝑞 + 𝜌𝜆𝑑          (2) 
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Flux linkages are given by, 

𝜆𝑞 = 𝐿𝑞𝑖𝑞       (3) 

𝜆𝑞 = 𝐿𝑞𝑖𝑞 + 𝜆𝑓       (4) 

Substituting Eq. (3) and Eq. (4) into Eq. (1) and Eq. (2) 

𝑉𝑞 =  𝑅𝑠𝑖𝑞 + 𝜔𝑟(𝐿𝑑𝑖𝑑 + 𝜆𝑓) + 𝜌𝐿𝑑𝑖𝑑       (5) 

𝑉𝑑 =  𝑅𝑠𝑖𝑑 − 𝜔𝑟𝐿𝑞𝑖𝑞 + 𝜌(𝐿𝑑𝑖𝑑 + 𝜆𝑓)      (6) 

Arranging Eq. (5) and Eq. (6) in matrix form, 

[
𝑉𝑞

𝑉𝑑
] = [

𝑅𝑠 + 𝜌𝐿𝑞 𝜔𝑟𝐿𝑑

−𝜔𝑟𝐿𝑞 𝑅𝑠 + 𝜌𝐿𝑑
] [

𝑖𝑞

𝑖𝑑
] + [

𝜔𝑟𝜆𝑓

𝜌𝜆𝑓
]      (7) 

The developed torque motor is being given by, 

𝑇𝑒 =
3

2
(

𝑃

2
) (𝜆𝑑𝑖𝑞 − 𝜆𝑞𝑖𝑑)          (8) 

The mechanical torque equation is, 

𝑇𝑒 = 𝑇𝐿 + 𝐵𝜔𝑚 + 𝐽
𝑑𝜔𝑚

𝑑𝑡
          (9) 

Solving for the rotor mechanical speed form Eq. (9) 

𝜔𝑚 = ∫ (
𝑇𝑒 − 𝑇𝐿 − 𝐵𝜔𝑚

𝐽
) 𝑑𝑡      (10) 

and, 

𝜔𝑚 = 𝜔𝑟 (
2

𝑃
)         (11) 

In the above equations ωr is the rotor electrical speed, ωm is the rotor mechanical speed. 
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2.2 Applying Parks Transformation 

The dq0 equivalent circuit of the PM machine shown in Fig 2.2. is similar to the one for the 

synchronous machine 

 

Figure 2.2. Equivalent circuit of PMSM without damper windings (Balashanmugham et 

al, 2016). 

The dynamic d-q modelling of the system is used for the study of motor during transient state 

and as well as in the steady state conditions. It is achieved by converting the three phase 

voltages and currents to dqo axis variables by using the Parks transformation. Converting the 

phase voltages variables Vabc to Vdqo variables in rotor reference frame axis are illustrated in 

the equations, 

[

𝑉𝑞

𝑉𝑑

𝑉𝑜

] =
2

3
[

cos 𝛳𝑟 cos(𝛳𝑟 − 120) cos(𝛳𝑟 + 120)
sin 𝛳𝑟 sin(𝛳𝑟 − 120) sin(𝛳𝑟 + 120)

1

2

1

2

1

2

] [
𝑉𝑎

𝑉𝑏

𝑉𝑐

]      (12) 

Convert Vdqo to Vabc 

[
𝑉𝑎

𝑉𝑏

𝑉𝑐

] =
2

3
[

cos 𝛳𝑟 sin 𝛳𝑟 1
cos(𝛳𝑟 − 120) sin(𝛳𝑟 − 120) 1
cos(𝛳𝑟 + 120) sin(𝛳𝑟 + 120) 1

] [

𝑉𝑞

𝑉𝑑

𝑉𝑜

]        (13) 
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3. Embedded Phase Domain Model 

The machine can be modeled as set of mutual inductances that change in value with time. In 

this case the model doesn’t have the problem of interface that may cause numerical instabilities. 

This model does not use the Park transform and directly solves the machine equations in phase 

domain (Dehkordi et al., 2005). For a machine, or in general, a set of time-varying mutual 

inductances can be written: 

𝑣(𝑡) =
𝑑

𝑑𝑡
([𝑙(𝑡)] ⋅ 𝑖(𝑡))      (14) 

Where v and i are vectors of node voltages and branch currents and [L] is the inductance matrix 

of the set. Using the trapezoidal integration, we have: 

𝑖(𝑡) =
𝛥𝑡

2
[𝐿(𝑡)]−1 ⋅ 𝑣(𝑡) +

𝛥𝑡

2
[𝐿(𝑡)]−1 + 𝑣(𝑡 − 𝛥𝑡)

+ [𝐿(𝑡)]−1[𝐿(𝑡 − 𝛥𝑡)]𝑖(𝑡 − 𝛥𝑡)        (15) 

where, 

𝐼ℎ =
𝛥𝑡

2
[𝐿(𝑡)]−1 + 𝑣(𝑡 − 𝛥𝑡) + [𝐿(𝑡)]−1[𝐿(𝑡 − 𝛥𝑡)]𝑖(𝑡 − 𝛥𝑡)    

The machine can be modelled as set of current sources Ih parallel to a network of g values that 

can be obtained from the matrix  𝐺𝐿 =
𝛥𝑡

2
[𝐿]−1 

3.1. Calculating the Phase Domain Inductances of the Permanent Magnet Machine 

Equation (15) can be directly used to model the machine; however, we need to have the value 

of the inductances as a function of time. Using an orthogonal transformation; 𝑇−1(𝜃) = 𝑇𝑡(𝜃) 

a matrix is given: 

[𝐿𝑎𝑏𝑐(𝜃)] = 𝑇−1(𝜃) = [

𝐿𝑑 0 0
0 𝐿𝑞 0
0 0 𝐿0

] ⋅ 𝑇(𝜃)      (16) 
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[

𝐿𝑎𝑓(𝜃)

𝐿𝑏𝑓(𝜃)

𝐿𝑐𝑓(𝜃)

] = 𝑇−1(𝜃) [
𝐿𝑚𝑑

0
0

]             (17) 

From (16) and (17) as an example we have: 

𝐿𝑎𝑞(𝜃) = 𝑙𝑠 + 𝑙𝑚 cos 2𝜃(𝐻)             (18) 

𝐿𝑎𝑏(𝜃) = 𝐿𝑏𝑎(𝜃) = −𝑀𝑠 − 𝑙𝑚 cos 2 (𝜃 +
𝜋

6
) (𝐻)       (19) 

𝐿𝑎𝑓(𝜃) = 𝐿𝑓𝑎(𝜃) = 𝑀𝑓 cos 𝜃(𝐻)             (20) 

The rest of inductances can be calculated in a similar way. The self-inductance of the field is 

the same in phase domain and dq0 domain: 

𝐿𝑓(𝜃) = 𝐿𝑓        (21) 

Where: 

𝐿𝑠 =
1

3
(𝐿𝑜 + 𝐿𝑑 + 𝐿𝑞) 

𝐿𝑚 =
1

3
(𝐿𝑑 − 𝐿𝑞) 

𝑀𝑠 = −
1

3
(
−𝐿𝑑 + 𝐿𝑞

2
+ 𝐿𝑜) 

𝑀𝑓 = √
2

3
𝐿𝑚𝑑  

3.2. Inverting the Inductance Matrix of the Machine 

The inductance matrix[L] of the machine has to be inverted in every time step to calculate the 

G matrix of the machine 
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4. Conclusion 

This paper gave an overview of the need for modelling electrical machines, a brief description 

of Permanent Magnet Synchronous Motors (PMSM) and has addressed the methods of 

modelling the PMSM based on Parks transforms and embedded phase domain model. 
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