NAME: FALUTA OPEYEMI VICTOR
DEPARTMENT: MECHANICAL ENGINEERING

MATRIC NO: 15/ENG06/030
COURSE TITLE: PRODUCT DESIGN

COURSE CODE: MEE 510

ASSIGNMENT 1

Project Topic: Design and Fabrication of a Pelletizer for agro based products

Material Selection, factors considered and reasons for selection

Table 1. Material selection S/N	Machine components	Materials	Factor	Reason for selection
1	Hopper	Mild Steel	Rigidity	Cheap, Available, Reliable and Durable
2	Support base	Mild Steel	Strength	Strong, Cheap, Available
3	Pulley	Mild Steel	Strong and Tough	Strong and not easily defected
4	Shaft	Stainless rod	Hard and Tough	Corrosion resistance, Strong, Availability and not easily deflected

5	Auger	Stainless Steel	Strong and ability to withstand impact stress	Corrosion resistance and Strength
6	Concave Drum	Stainless Steel	Hard and Tough	Very strong and Corrosion Resistance
7	2.5 mm Die disc	Stainless Steel	Temperature resistance, machinability, strong and tough	Corrosion resistance, strong, ease of maintenance
8	V-belt	Rubber	Strength, tension	Economical, belt life duration

Design specification

Part no	Component parts	Qty	Dimension
1	V-belt	2	800 mm dia
2	Pulley	2	100 mm and 70 mm dia
3	Gear motor	1	3 hp
4	Shaft	1	40 mm
5	Hopper	1	35×35
6	Barrel	1	$50 \mathrm{~mm} \times 660 \mathrm{~mm}$
7	Die disc	3	$2.5 \Theta, 3 \Theta, 5 \Theta, 6 \Theta \times 125 \Theta)$
8	Out let	1	$7 \times 7 \mathrm{~mm}$
9	Frame	1	$183 \times 115 \times 38 \mathrm{~mm}$
10	Screw conveyor	1	$40 \mathrm{~mm} \times 655 \mathrm{~mm}$

i) The Frame

The frame is the support base for other components. It is rigid and designed to withstand dynamic stresses and it measures $183 \times 115 \times 38 \mathrm{~mm}$.
ii) The Barrel

This is a cylindrically shaped component with a 50 mm diameter and 660 mm length. It is made of stainless steel of thickness 2.5 mm .

iii) The Screw Conveyor

This a stainless cylindrical screw shaft of 46 mm external diameter and 660 mm length, placed inside the barrel for the purpose of conveying feed components to the die at a constant rate. It is connected to an electric gear motor with a v-belt.
iv) The Die Plate

The die is a plate placed at the terminal of the screw, it is made of stainless steel and of 2.5 mm thickness with holes of $2.5,3,5$ and 6 mm drilled onto it. Note that the die is of variable sizes depending on the size of the feed pellet required.

v) Feed Hopper.

Hopper is the input point for the feed components. The mixed feed is fed in through hopper and with the help of a feed conveyor attached to the hopper, the feeds are transferred to the barrel, from where it will be taken to the die for extrusion. It has an outer and inner dimension of 350 x 350 mm and $210 \times 210 \mathrm{~mm}$ respectively, at an angle 90 o . The dimension of the outlet of the hopper leading to the barrel is 40 x 40 mm , with a height of 350 mm . A gauge number 20 stainless steel was used to prevent sticking of feeds to the feed hopper and to allow easy cleaning.

Detailed Design and Specification of the Pelletizer

Figure 1: Detailed Design and Specification of the Pelletizer

Die Design

Figure 2: Shows the different dimensions of the die plates

Figure 3: Shows the different views of the pelletizing machine

BEME (Bill of Engineering Measurement and Evaluation)

ITEM	QTY	PART NUMBER	Fabrication procedure.	Cost
1	1	Main Shaft	This part is machined on a lathe with turning, drilling and tapping procedures	$\begin{gathered} \text { NGN } \\ 12,500.00 \end{gathered}$
2	1	Drum shaft assembly	This part is machined on a lathe with turning, drilling and tapping procedures. The rollers are also hardened.	$\begin{gathered} \hline \text { NGN } \\ 28,500.00 \end{gathered}$
3	3	2.5 mm disc	This disc are drilled on a pillar drill, turned on a lathe, counter sunk and hardened.	$\begin{gathered} \hline \text { NGN } \\ 17,500.00 \end{gathered}$
4	1	Top washer	Bought over the shelf	NGN 600.00
5	1	$\begin{aligned} & \text { ANSI B18.2.3.5M - M10 x } 1.5 \mathrm{x} \\ & 25 \end{aligned}$	Bought over the shelf	NGN 250.00
6	1	Spinning outlet	Plasma cut, machined, welded and tapped	NGN 2,500.00
7	1	Lower body	Machined on a lathe and welded	$\begin{gathered} \text { NGN } \\ 17,000.00 \end{gathered}$
8	1	Top body	Machined on a lathe	$\begin{gathered} \text { NGN } \\ 15,500.00 \end{gathered}$
9	1	Bearing holder	Machined on a lathe	$\begin{gathered} \text { NGN } \\ 12,800.00 \end{gathered}$
10	2	BS 290 SKF - SKF 6206-RZ	Bought over the shelf	NGN 2,000.00
11	1	Top plate	Plasma cut, and welded.	NGN 3,650.00
12	1	ELECTRIC MOTOR	Bought over the shelf	$\begin{gathered} \text { NGN } \\ 60,000.00 \end{gathered}$

13	2	V-Belt	Bought over the shelf	NGN 850.00
14	1	Grooved Pulley1	Machined on a lathe	NGN 3,000.00
15	1	Grooved Pulley2	Machined on a lathe	NGN 4,250.00
16	1	Frame	Cut with a chop off saw and welded	NGN 8,950.00
17	1	Hopper	Cut out of a sheet, rolled and welded.	NGN 2,800.00
		Wiring and socket	NGN 6,250.00	
		Transportation of materials and machine		NGN 7,800.00
				NGN
		$25,000.00$		

Design Calculations

Hopper

Fig A: Truncated pyramid
$\mathrm{AB}=360 \mathrm{~mm}$
$\mathrm{BC}=380 \mathrm{~mm}$
$\mathrm{h}=350 \mathrm{~mm}$
$\mathrm{FG}=135 \mathrm{~mm}$
$\mathrm{EF}=120 \mathrm{~mm}$
The upper length AB of the hopper was calculated as;
/FG/: /AB/ = 1:3
$1: 3=120 \times \mathrm{AB}$
$=120 \times 3$
$=360 \mathrm{~mm}$
The height h , between the upper and the lower face of the hopper is calculated as;
Tan $680=\mathrm{h} / 120$
$\mathrm{h}=120 \times \operatorname{Tan} 680$
$\mathrm{h}=297.010 \mathrm{~mm}$
$\mathrm{h}=300 \mathrm{~mm}$

Fig.B: Sectional triangle of the hopper

Fig C: Section of hopper plate

$$
\begin{aligned}
& \mathrm{H}=\mathrm{h}+\mathrm{H} 1 \\
& \mathrm{H}=300+\mathrm{H} 1 \\
& \mathrm{FJ} / \mathrm{DI}=\mathrm{H} 1 / \mathrm{h}+\mathrm{H} 1 \\
& 60 / 180=\mathrm{H} 1 / 300+\mathrm{H} 1 \\
& \mathrm{H} 1(180)=60(300+\mathrm{H} 1) \\
& 180 \mathrm{H} 1-60 \mathrm{H} 1=1800 \\
& \mathrm{H} 1=18-00 / 120 \\
& \mathrm{H} 1=150 \mathrm{~mm}
\end{aligned}
$$

Therefore total height, $\mathrm{H}=(300+150) \mathrm{mm}$
$\mathrm{H}=4$
Volume of hopper $=$ Volume of larger pyramid - Volume of smaller pyramid
Volume of hopper $=1 / 3$ base area \times height
$=1 / 3 \mathrm{a} 2 \mathrm{H}-1 / 3 \mathrm{~b} 2 \mathrm{H} 1$ (1)
$=1 / 3(\mathrm{a} 2 \mathrm{H}-\mathrm{b} 2 \mathrm{H} 1)$
$=1 / 3(3602 \times 450)-(1202 \times 150)$
$=19440000-720000$
$=18720000 \mathrm{~mm} 3$
$=18720000 \mathrm{~mm} 3$
$=18.720000 \mathrm{~cm} 3$
$=0.01872 \mathrm{~m} 3$

Determination of the Driven Pulley Diameter

The diameter of motor is $65 \mathrm{~mm}=6.5 \mathrm{~cm}$ and the motor speed chosen for electric motor is 1400 rpm.

Assuming the machine works averagely between 45% to 50% efficiency, the machine speed will be 650rpm [7].

Machine pulley diameter, D2 =?
Motor Pulley diameter, D1 $=6.5 \mathrm{~cm}$
Electric motor Speed, N1 = 1400 rpm
Machine speed, N2 $=650 \mathrm{rpm}$
Therefore;
N1D1 = N2D2 (2)
$\mathrm{D} 2=(\mathrm{N} 1 \mathrm{D} 1) / \mathrm{N} 2$
$=(1400 \times 6.5) / 650$
$=9100 / 650$
D2 $=14 \mathrm{~cm}$
Transmission ratio is given as D2/D1
D2/ D1 $=14 / 6.5$
$=2.15$
Therefore the transmission ration is calculated as;
1: 2.15

Determination of Belt Length

In determining the length of belt, the relation is given as;
Where;

$$
L=2 C+1.57(D+d)+\frac{(D+d)^{2}}{4 C}
$$

$\mathrm{L}=$ length of belt
$\mathrm{C}=$ centre distance between two pulleys
$\mathrm{D}=$ Larger pulley diameter
$\mathrm{d}=$ smaller puller diameter
For standard belt, Centre distance is given as $59 \mathrm{~cm}=590 \mathrm{~mm}$.
$\mathrm{D}=14 \mathrm{~cm}$, previously calculated
$\mathrm{d}=6.5 \mathrm{~cm}$, assumed

$$
\begin{aligned}
& L=2\left(59+1.57(14+6.5)+\frac{(14+6.5)^{2}}{4(59)}\right. \\
& \begin{aligned}
L=118+32.185+\frac{56.25}{236} & =118+32.185+0.2383 \\
& =150.42 \mathrm{~cm} \\
& =150.42 \times 10^{-2} \mathrm{~m}
\end{aligned}
\end{aligned}
$$

Shaft Design

For the rotating shaft, pure torsion is assumed. Hence, the maximum shear stress due to torsion and the angle of twist are considered.

$$
P=T \omega=\frac{2 \pi N T}{60}
$$

(Burr, 1982; Khurmi and Gupta, 1979)
$T=\frac{60 P}{2 \pi N}$
$T=153.3 \mathrm{Nm}$

Diameter of shaft $=0.025 \mathrm{~m}$
Active length of shaft $=0.34 \mathrm{~m}$
Maximum stress due to torsion is

$$
\begin{aligned}
& \tau_{\max }=\frac{\tau r}{J} \quad(\text { Burr, 1982; Khurmi and Gupta, 1979 }) \\
& \tau_{\max }=50 \mathrm{MNm}^{-2}
\end{aligned}
$$

Angle of twist of the shaft is

$$
\begin{aligned}
& \theta=\frac{T L}{G J} \quad \text { (Burr, 1982; Khurmi and Gupta, 1979) } \\
& \theta=0.92^{\circ}
\end{aligned}
$$

Determination of Belt Speed

Belt speed is represented by;
Where;

$$
V=\frac{\pi \mathrm{DN}}{60}
$$

$\mathrm{V}=$ speed of belt $(\mathrm{m} / \mathrm{s})$
$\mathrm{D}=$ diameter of the smaller pulley $\left(6.5 \mathrm{~cm}=6.5 \times 10^{-2}\right)$; assumed.
$\mathrm{N}=$ number of revolution per minute
(Assuming the machine is to be operated at 90% maximum speed)
Actual speed will be $=1400 \times \frac{90}{100}$
= 1260rpm

Belt Speed; $V=\frac{\pi \mathrm{DN}}{60}$

$$
\begin{aligned}
V & =\frac{3.142 \times 6.5 \times 1260}{60} \\
& =10^{-2 \times \frac{25732}{60}} \\
& =\frac{257.33}{60} \\
& =4.29 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Determination of Belt Tension

Fig D: The belt on the drive and driven pulley

Where,
$\mathrm{T} 1=$ Belt tension on the tight side
$\mathrm{T} 2=$ Belt tension on the slack side
$\beta=$ Angle of inclination of the belt
$\omega \beta=$ Angle of wrap on the bigger pulley
$\omega S=$ Angle of wrap on the smaller pulley
$\operatorname{Sin} B=\frac{R-r}{c}$

Where,
$C=$ Centre distance
$\mathrm{R}=$ Radius of bigger pulley
దS $=180^{\circ}-2 \operatorname{Sin}^{-1}\left(\frac{\mathrm{R}-\mathrm{r}}{\mathrm{C}}\right)$
$\propto \beta=180^{\circ}+2 \sin ^{-1}\left(\frac{\mathrm{R}-\mathrm{r}}{\mathrm{C}}\right)$
దS $=180^{\circ}-2 \operatorname{Sin}^{-1}\left(\frac{70-32.5}{590}\right)$
= 180 - 7.3
$=172.7^{0}$
$=3.01 \mathrm{rad}$
Ф $B=180^{\circ}+2 \operatorname{Sin}^{-1}\left(\frac{70-32.5}{590}\right)$
$=180+7.3^{0}$
$=187.3^{0}$
$=3.27 \mathrm{rad}$
For smaller pulley,
Since $\omega S=3.01 \mathrm{rad}$
Groove angle ' θ ' $=35^{\circ}$ for V-belt
Coefficient of friction ' μ ' $=0.15$
$=\frac{\ell \times \mu \times \omega}{\frac{1}{2} \operatorname{Sin} \theta}$
$=\frac{\ell \times 0.15 \times 3.01}{\frac{1}{2} \operatorname{Sin} 35}$
$\ell^{0.15}=4.49$
For larger pulley,

Since $\omega \beta=3.27 \mathrm{rad}$
Groove angle ' θ ' $=350$ for V-belt
Coefficient of friction ' μ ' $=0.25$
$=\frac{\ell \times \mu \times \omega}{\frac{1}{2} \operatorname{Sin} \theta}$
$=\frac{\ell \times 0.25 \times 3.27}{\frac{1}{2} \operatorname{Sin} 35}$
$\ell^{0.25} \stackrel{2}{=} 15.16$
The pulley that governs the design is the one with smallest angle of wrap [7].

$$
\frac{W 2}{W 1}=\frac{h}{h+t}
$$

Where,
$\mathrm{W} 1=$ Nominal top width of the belt
$\mathrm{W} 2=$ Nominal bottom width of the belt
$\mathrm{t}=$ Nominal height (thickness)
Groove angle $=35^{\circ}$ as earlier stated
For standard V-belt,
$\mathrm{W} 1=3.125 \mathrm{~cm}$
Thickness $=1.875 \mathrm{~cm}$ (assumed)
$\mathrm{h}=1.5625 \times 1 /(\tan 17.5)$
$=4.96 \mathrm{~cm}$

From the above equation,

$$
\frac{W 2}{W 1}=\frac{h}{h+t}
$$

$\mathrm{W} 2=\mathrm{W} 1 \mathrm{~h}(\mathrm{~h}+\mathrm{t})$
$=3.125 \times 4.96 /(4.96+1.875)$
$=15.488 / 6.831$
$=2.27 \mathrm{~cm}$
Area of the belt $=$ width of the belt \times thickness of the best
$=3.125+2.27 /(2 \times 1.875)$
$=5.06 \mathrm{~cm} 2$
$=5.06 \times 10-4 \mathrm{~m} 2$

Density of rubber belt is $1250 \mathrm{Kg} / \mathrm{m} 3$ [7]
Mass of belt $=$ Density \times Area \times Length
$=1250 \times 5.06 \times 10^{-4} \times 150.42 \times 10^{-2}$
$=0.95 \mathrm{Kg}$
Belt tension can now be determined by using,

$$
\mathrm{T}_{1}=\frac{\mathrm{MV} 2}{\mathrm{MV} 2}=\frac{\ell \mu \omega}{\sin \theta / 2}
$$

Where,
$\mu=$ coefficient of friction $=0.15$
$\omega \mathrm{s}=3.01 \mathrm{rad}$
Mass per unit length $=1250 \times 5.055 \times 10^{-4}$
$=0.63188 \mathrm{~kg} / \mathrm{m}$
$\mathrm{V}=$ belt speed
$=4.29 \mathrm{~m} / \mathrm{s}$
$\theta=$ angle of groove
$=35^{0}$
$\mathrm{T} 1=$ tension on the tight side of the belt (N)
$\mathrm{T} 2=$ tension on the slack side of the belt (N)
Mass of belt per meter $=$ Density x Area

$$
\begin{aligned}
& =1250 \times 5.055 \times 10^{-4} \\
& =0.63188 \mathrm{~kg} / \mathrm{m}
\end{aligned}
$$

$$
\mathrm{T}_{1}-\frac{M V 2}{\mathrm{~T} 2}-\mathrm{MV}^{2}=\frac{\ell \mu \omega}{\sin \theta / 2}
$$

Recall

$$
\begin{gathered}
\mathrm{T}_{1}-\frac{0.63188 \times(4.29) 2}{\mathrm{~T} 2}-0.63188 \times(4.29)^{2}=\frac{\ell 0.15 \times 3.01}{\sin 1 / 2(35)} \\
\mathrm{T}_{1}-\frac{11.63}{\mathrm{~T} 2}-11.3=4.49 \\
4.49\left(\mathrm{~T}_{2}-11.3\right)=\mathrm{T}_{1}-11.63 \\
4.49\left(\mathrm{~T}_{2}-11.3\right)+11.63=\mathrm{T}_{1}
\end{gathered}
$$

Note, Power transmitted by motor, P is given as
$\mathrm{P}=(\mathrm{T} 1-\mathrm{T} 2) \mathrm{V}$
For 5.5 hp motor power transmitted will be 4.29 kw
Since $1 \mathrm{hp}=745.699872 \mathrm{w}$
$1 \mathrm{hp}=0.74569 \mathrm{kw}$
$5.5 \mathrm{hp}=(0.74569 \times 5.5) \mathrm{kW}$
$=4.29$
$4.29=(\mathrm{T} 1-\mathrm{T} 2) 4.29$
$(4.29 \times 1000) \mathrm{w}=(\mathrm{T} 1-\mathrm{T} 2) 4.29$
$4290=(\mathrm{T} 1-\mathrm{T} 2) 4.29$
$(\mathrm{T} 1-\mathrm{T} 2)=4290 / 4.29$
$\mathrm{T} 1-\mathrm{T} 2=1000$
$\mathrm{T} 1=1000+\mathrm{T} 2$
Putting Equation (ii) in (i) above
$4.49 \mathrm{~T} 2-52.22+11.63=1000 \mathrm{~T} 2$
$4.49 \mathrm{~T} 2-40.59=1000+\mathrm{T} 2$
$4.49 \mathrm{~T} 2-\mathrm{T} 2-40.59=1000$
$3.49 \mathrm{~T} 2-40.59=1000$
$3.49 \mathrm{~T} 2=1000+40.59$
$=1040.59$
$\mathrm{T} 2=1040.59$
3.49
$\mathrm{T} 2=298.16 \mathrm{~N}$
From equation (ii)
$\mathrm{T} 1=1000+\mathrm{T} 2$
$=1000+298.16$
$=1298.16 \mathrm{~N}$
Resultant belt tension; $\mathrm{T} 1+\mathrm{T} 2$
$=1298.16+298.16$

The resultant torque T , is given as
$\mathrm{T}=(\mathrm{T} 1-\mathrm{T} 2) \mathrm{rp}$
Where rp is the radius of the bigger pulley (m)
$\mathrm{T}=(1298.16+298.16) 7 \times 10^{-2}$
$\mathrm{T}=(1298.16+298.16) 0.07$
$\mathrm{T}=36.7 \mathrm{Nm}$
Design Process/ Manufacturing

Main Shaft	This part is machined on a lathe with turning, drilling and tapping procedures
Drum shaft assembly	This part is machined on a lathe with turning, drilling and tapping procedures. The rollers are also hardened.
2.5mm disc	This disc are drilled on a pillar drill, turned on a lathe, counter sunk and hardened.
Top washer	Bought over the shelf
ANSI B18.2.3.5M - M10 x 1.5 x 25	Bought over the shelf
Spinning outlet	Plasma cut, machined, welded and tapped
Lower body	Machined on a lathe and welded
Top body	Machined on a lathe
Bearing holder	Machined on a lathe
BS 290 SKF - SKF 6206-RZ	Bought over the shelf
Top plate	Plasma cut, and welded.
ELECTRIC MOTOR	Bought over the shelf
V-Belt	Bought over the shelf
Grooved Pulley1	Machined on a lathe
Grooved Pulley2	Machined on a lathe
Frame	Cut with a chop off saw and welded of a sheet, rolled and welded.
Hopper	

