MATRIC NO:18/SCI01/068 NAME:OLASEHINDE MERUJE GOLDEN

1)

Definition

A linear transformation is a transformation $\mathrm{T}: \mathrm{Rn} \rightarrow \mathrm{Rm}$ satisfying
$\mathrm{T}(\mathrm{u}+\mathrm{v})=\mathrm{T}(\mathrm{u})+\mathrm{T}(\mathrm{v}) \mathrm{T}(\mathrm{cu})=\mathrm{cT}(\mathrm{u})$
for all vectors u, v in $R n$ and all scalars c.

Facts about linear transformations

Let $T: R n \rightarrow R m$ be a linear transformation. Then:
$T(0)=0$.
For any vectors v1,v2,...,vk in Rn and scalars c1,c2,...,ck, we have $T A c 1 v 1+c 2 v 2+\cdots+c k v k B=c 1 T(v 1)+c 2 T(v 2)+\cdots+c k T(v k)$.

Examples

i)

Define $T: R \rightarrow R$ by $T(x)=x+1$. Is T a linear transformation?
Solution
We have $T(0)=0+1=1$. Since any linear transformation necessarily takes zero to zero by the above important note, we conclude that T is not linear (even though its graph is a line).

Note: in this case, it was not necessary to check explicitly that T does not satisfy both defining properties: since $\mathrm{T}(0)=0$ is a consequence of these properties, at least one of them must not be satisfied. (In fact, this T satisfies neither.)
ii)

Define $\mathrm{T}: \mathrm{R} 2 \rightarrow \mathrm{R} 2$ by $\mathrm{T}(\mathrm{x})=1.5 \mathrm{x}$. Verify that T is linear.
Solution
We have to check the defining properties for allvectors u, v and all scalars c. In other words, we have to treat u, v, and c as unknowns. The only thing we are allowed to use is the definition of T .
$T(u+v)=1.5(u+v)=1.5 u+1.5 v=T(u)+T(v)$
Since T satisfies both defining properties, T is linear.
Note: we know from this example in Section 3.1 that T is a matrix transformation: in fact,
$\mathrm{T}(\mathrm{x})=\left(\begin{array}{cc}1.5 & 0 \\ 0 & 1.5\end{array}\right) \mathrm{x}$.
Since a matrix transformation is a linear transformation, this is another proof that T is linear.
iii)

Define $\mathrm{T}: \mathrm{R} 2 \rightarrow \mathrm{R} 3$ by the formula
$\mathrm{T}\binom{x}{y}=\left(\begin{array}{c}3 x-y \\ y \\ x\end{array}\right)$.
Verify that T is linear.
Solution
We have to check the defining properties for allvectors u, v and all scalars c. In other words, we have to treat u, v, and c as unknowns, the only thing we are allowed to use is the definition of T. Since T is defined in terms of the
coordinates of u, v, we need to give those names as well; say $\mathrm{u}=\binom{x 1}{y 2}$ and $\mathrm{v}=\binom{x 2}{y 2}$. For the first property, we have

$$
\begin{gathered}
\mathrm{T}\left(\binom{\mathrm{x} 1}{\mathrm{y} 1}\right)+\left(\binom{x 2}{y 2}\right)=\mathrm{T}\binom{x 1+x 2}{y 1+y 2}=\left(\begin{array}{c}
3(x 1+x 2)-(y 1+y 2) \\
y 1+y 2 \\
x 1+x 2
\end{array}\right) \\
=\left(\begin{array}{c}
(3 x 1-y 1)+(3 x 2-y 2) \\
y 1+y 2 \\
x 1+x 2
\end{array}\right) \\
=\left(\begin{array}{c}
3 x 1-y 1 \\
y 1 \\
\mathrm{x} 1
\end{array}\right)+\left(\begin{array}{c}
3 x 2-y 2 \\
y 2 \\
x 2
\end{array}\right)=\mathrm{T}\binom{x 1}{y 1}+\mathrm{T}\binom{x 2}{y 2}
\end{gathered}
$$

For the second property,

$$
\begin{aligned}
& \mathrm{T}\left(\mathrm{c}\binom{\mathrm{x} 1}{\mathrm{y} 1}\right)=\mathrm{T}\binom{c x 1}{c y 1}=\left(\begin{array}{c}
3(c x 1)-(c y 1) \\
c y 1 \\
c x 1
\end{array}\right) \\
& =\left(\begin{array}{c}
c(3 x 1-y 1) \\
c y 1 \\
c x 1
\end{array}\right)=\mathrm{c}\left(\begin{array}{c}
3 x 1-y 1 \\
y 1 \\
x 1
\end{array}\right)=\mathrm{cT}\binom{x 1}{y 1}
\end{aligned}
$$

Since T satisfies the defining properties, T is a linear transformation.
Note: we will see in this example below that

$$
\mathrm{T}\binom{x}{y}=\left(\begin{array}{rr}
3 & -1 \\
0 & 1 \\
1 & 0
\end{array}\right)\binom{x}{y}
$$

Hence T is in fact a matrix transformation.

iv)

Verify that the following transformations from R2 to R2 are not linear:
$\mathrm{T} 1\binom{x}{y}=\binom{|\mathrm{x}|}{y} \quad \mathrm{~T} 2\binom{x}{y}=\binom{x y}{y} \quad \mathrm{~T} 3\binom{x}{y}=\binom{2 x+1}{x-2 y}$
Solution
In order to verify that a transformation T is notlinear, we have to show that T does not satisfy at least one of the two defining properties. For the first, the negation of the statement "T(u+v)=T(u)+T(v) for all vectors u, v " is "there exists at least one pair of vectors u, v such that $T(u+v) A=T(u)+T(v) . "$ In other words, it suffices to find one example of a pair of vectors u, v such that $T(u+v) A=T(u)+T(v)$. Likewise, for the second, the negation of the statement " $\mathrm{T}(\mathrm{cu})=\mathrm{cT}(\mathrm{u})$ for all vectors u and all scalars c " is "there exists some vector u and some scalar c such that $T(c u) A=c T(u) . "$ In other words, it suffices to find one vector u and one scalar c such that $\mathrm{T}(\mathrm{cu}) \mathrm{A}=\mathrm{cT}(\mathrm{u})$.

For the first transformation, we note that

$$
\mathrm{T} 1\left(-\binom{-1}{0}\right)=\mathrm{T} 1\binom{-1}{0}=\binom{|-1|}{0}=\binom{1}{0}
$$

but that

$$
-\mathrm{T} 1\binom{1}{0}=-\binom{|1|}{0}=-\binom{1}{0}=\binom{-1}{0}
$$

Therefore, this transformation does not satisfy the second property.
For the second transformation, we note that

$$
-\mathrm{T} 2\left(2\binom{1}{1}\right)=\mathrm{T} 2\binom{2}{2}=\binom{2.2}{2}=\binom{4}{2}
$$

but that

$$
2 \mathrm{~T} 2\binom{1}{1}=2\binom{1.1}{1}=2\binom{1}{1}=\binom{2}{2}
$$

Therefore, this transformation does not satisfy the second property.

For the third transformation, we observe that

$$
\mathrm{T} 3\binom{0}{0}=\binom{2(0)+1}{0-2(0)}=\binom{1}{0} \neq\binom{ 0}{0}
$$

Since T3 does not take the zero vector to the zero vector, it cannot be linear. v)

Define T:C3 \rightarrow C2T:C3 \rightarrow C2 by describing the output of the function for a generic input with the

$$
\left.T\left(\begin{array}{l}
x 1 \\
x \\
x \\
x 3
\end{array}\right]\right)=\left[\begin{array}{c}
2 \mathrm{x} 1+\mathrm{x} 3 \\
-4 \mathrm{x} 2
\end{array}\right]
$$

and check the two defining properties.

$$
\begin{gathered}
\mathrm{T}(\mathrm{x}+\mathrm{y})=\mathrm{T}\left(\left[\begin{array}{l}
x 1 \\
x 2 \\
x 3
\end{array}\right]+\left[\begin{array}{l}
y 1 \\
y 2 \\
y 3
\end{array}\right]\right) \\
\mathrm{T}=\left(\left[\begin{array}{l}
x 1+y 1 \\
x 2+y 2 \\
x 3+y 3
\end{array}\right]\right) \\
{\left[\begin{array}{c}
2(\mathrm{x} 1+\mathrm{y} 1)+(\mathrm{x} 3+\mathrm{y} 3) \\
-4(\mathrm{x} 2+\mathrm{y} 2)
\end{array}\right]} \\
{\left[\begin{array}{c}
(2 \mathrm{x} 1+\mathrm{x} 3)+(2 \mathrm{y} 1+\mathrm{y} 3) \\
-4 \mathrm{x} 2+(-4) \mathrm{y} 2
\end{array}\right]} \\
{\left[\begin{array}{c}
2 \mathrm{x} 1+\mathrm{x} 3 \\
-4 \mathrm{x} 2
\end{array}\right]+\left[\begin{array}{c}
2 \mathrm{y} 1+\mathrm{y} 3 \\
-4 \mathrm{y} 2
\end{array}\right]} \\
\mathrm{T}\left(\left[\begin{array}{l}
x 1 \\
x 2 \\
x 3
\end{array}\right]\right)+\mathrm{T}\left(\left[\begin{array}{l}
{\left[\begin{array}{l}
y 1 \\
y 2 \\
y 3
\end{array}\right]}
\end{array}\right)\right.
\end{gathered}
$$

$T(x)+T(y)$

And

$$
\begin{gathered}
\mathrm{T}(\alpha \mathrm{x})=\mathrm{T}\left(\begin{array}{l}
\left.\alpha\left[\begin{array}{l}
x 1 \\
x 2 \\
x 3
\end{array}\right]\right) \\
=\mathrm{T}\left(\left[\begin{array}{l}
x 1 \\
x 2 \\
x 3
\end{array}\right]\right) \\
=\left[\begin{array}{c}
2(\alpha \mathrm{x} 1)+(\alpha \mathrm{x} 3) \\
-4(\alpha \mathrm{x} 2)
\end{array}\right] \\
=\left[\begin{array}{c}
\alpha(2 \mathrm{x} 1+\mathrm{x} 3) \\
\alpha(-4 \mathrm{x} 2)
\end{array}\right] \\
=\alpha\left[\begin{array}{c}
2 \mathrm{x} 1+\mathrm{x} 3 \\
-4 \mathrm{x} 2
\end{array}\right] \\
=\alpha \mathrm{T}\left(\left[\begin{array}{l}
x 1 \\
x 2 \\
x 3
\end{array}\right]\right) \\
=\alpha \mathrm{T}(\mathrm{x})
\end{array}\right.
\end{gathered}
$$

T is a linear transformation.

