
ANSWER
DIFFERENCES
	High-Level Languages
	Low-Level Languages

	The high-level language is programmer friendly.
	Low-level language is machine amiable which means it is interpreted by machines easily.

	When it comes to memory consumption the High-level languages are highly inefficient
	When it comes to memory consumption the low-level languages are highly efficient

	A high-level language is easily understandable
	Low-level language cannot be interpreted easily as it contains a set of long series of 0’s and 1’s.

	The programs written in high-level languages are portable and machine independent.
	Low-level languages cannot run over different machines as these are not- portable and machine independent. 

	Debugging and maintenance are easier
	Debugging and maintenance are harder



	High-Level Languages
	Assembly Languages

	In high-level language programs run independently of processor type.
	In assembly language programs written for one processor will not run on another type of processor.

	Performance and accuracy of high-level language code are not as good as that of Assembly language. 
	Performance and accuracy of assembly language code are better than a high-level.

	The compiler is used to compile code in the high-level.
	Assembler is used to translate code in assembly language.

	The executable code of high-level language is larger than assembly language code so it takes a longer time to execute.
	The executable code of assemblers are much smaller than that of High-level Languages so it takes a shorter time to execute.

	In assembly language, we can directly read pointers at a physical address which is not possible in high-level
	In assembly language, we can directly read pointers at a physical address



	Low-Level Languages
	Assembly Languages

	Machine language is in form of 0’s and 1’s. One showcases the true/on while zero depicts the false/off state.
	Assembly language is English syntaxes, which is understood by CPU after converting it to low level language by interpreter and compilers.

	CPU can directly understand Machine language, no need of compiler or assembler.
	Programmers can understand the assembly lang.uage, however CPU cannot

	Machine code differs platform to platform
	Assembly language is set of instructions which in same irrespective of platform

	Binary codes cannot be memorized.
	The codes and instructions of assembly languages can be memorized

	Modification is not possible. It has to be written from scratch for specific type of CPU.
	Modification is not that tough here.



SIMILARITIES
1. They all have rules and languages 
2. They are all programming languages.
3. Their end result after they have been compiled/interpreted/assembled is machine code.
4. They are used to write computer programs.
5. They are advancements of each other.
