Name: AGBEYANGI GLORY MOFOPEFOLUWA
Department: PHARAMACOLOGY 19/MHS07/003
Assignment Title: Stereochemistry and Functional Group
Course Title: General Chemistry II
Course Code: CHM 102

Question

1. Name the functional groups present in each of the following molecules

(i) $\mathrm{CH}_{2}=\mathrm{C}(\mathrm{OH}) \mathrm{HCHO}$ (ii) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{COCH}_{3}$ (iii) $\mathrm{CH}_{3} \mathrm{C}=\mathrm{CHCH}(\mathrm{OH}) \mathrm{CHO}$

2. A 0.856 g sample of pure ($2 \mathrm{R}, 3 \mathrm{R}$)-tartaric acid was diluted to 10 cm 3 with water and placed in a 1.0 dm polarimeter tube. the observed rotation at $20^{\circ} \mathrm{C}$ was $+1.0^{0}$. Calculate the specific rotation of (2R, 3R)-tatrtaric acid.
3. Draw the possible geometric isomers (where possible) for each of the following compounds:
(i) Hexa-2,4-diene (ii) 2,3-Dimethylbut-2-ene

ANSWERS

1(i) (a) Formyl group (Aldehyde) group (CHO)
(b) Hydroxyl group -OH
(c) Alkene Group (Double bond)
(ii) (a) Amino group $\left(-\mathrm{NH}_{2}\right)$
(b) Aromatic group (Phenyl group)
(c) Keto group (Carbonyl group) $\mathrm{C}=\mathrm{O}$
(iii) (a) Aldehyde group
(b) Hydroxyl group
(c) Double bond (Alkene group)

2 Concentration $\left(\mathrm{moldm}^{-3}\right)=\underline{\operatorname{Conc}\left(\mathrm{g} / \mathrm{dm}^{3}\right)}$
Molar mass ($\mathrm{g} / \mathrm{mol}$)

$$
[\alpha]_{\lambda}^{\mathrm{T}}=\frac{\alpha}{\mathrm{c} \cdot 1}
$$

Molar mass $=150 \mathrm{~g} / \mathrm{mol}$
$0.856 \mathrm{~g}-10 \mathrm{~cm}^{3}$

$$
\mathrm{xg}-1000 \mathrm{~cm}^{3}
$$

$\underline{0.856 \times 1000}=85.6 \mathrm{~g} / \mathrm{dm}^{3}$ 10

Concentration in $\mathrm{g} / \mathrm{cm}^{3}=$ Concentration $\left(\mathrm{g} / \mathrm{dm}^{3}\right)$
1000

$$
=\frac{85.6}{1000}=0.0856 \mathrm{~g} / \mathrm{cm}^{3}
$$

Using

$$
\begin{aligned}
{[\alpha]_{\lambda}^{\mathrm{T}} } & =\frac{\alpha}{\mathrm{c} .1} \quad ; \alpha=41.0^{\circ} \quad, \quad \mathrm{C}=\frac{0.856}{10}=0.0856 \mathrm{~g} / \mathrm{cm}^{3} \\
& =\frac{41.0}{0.0856}=11.68^{\circ}
\end{aligned}
$$

cis-

(ii) $\mathrm{H} \mathrm{CH}_{3} \mathrm{CH}_{3} \mathrm{H}$

No geometric isomer.

