NAME: BELLO NIMATH LOLA

**DEPARTMENT: NURSING** 

MATRIC NO: 19/MHS02/036

**COURSE CODE: CHEM 102 ASSIGNMENT** 

QUESTION 1

Name the functional groups present in each of the following molecules

- i. CH<sub>2</sub>=C(OH)HCHO
- ii. C<sub>6</sub>H<sub>5</sub>CH(NH<sub>2</sub>)COCH<sub>3</sub>
- iii. CH₃C=CHCH(OH)CHO

### <u>Answer</u>

- i. CH<sub>2</sub>=C(OH)HCHO- Alkene
  - Alkanol
  - Aldehyde
- ii. C<sub>6</sub>H<sub>5</sub>CH(NH<sub>2</sub>)COCH<sub>3</sub>-Amides
  - Ketones
- iii. CH₃C=CHCH(OH)CHO- Alkene
  - Alkanol
  - Alkanal

### **QUESTION 2**

A 0.856g sample of pure (2R, 3R) tartaric acid was diluted to  $10\text{cm}^3$  with water and placed in a 1.0dm Polari meter tube. The observed rotation at  $20^{\circ}$ C was  $+1.0^{\circ}$ . Calculate the specific rotation of (2R, 3R) tartaric acid.

## <u>Answer</u>

Mass of pure (2R, 3R) tartaric acid= 0.856g

Volume= 10cm<sup>3</sup>

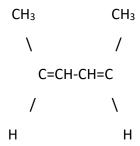
Length of Polari meter tube=1.0dm

Concentration of pure (2R, 3R) tartaric acid =  $\frac{0.856}{10}$  = 0.0856g/cm<sup>3</sup>

$$Specific \ rotation = \frac{observed \ rotation}{(concentration) \times (path \ length \ of \ sample \ cell \ in \ dm)}$$

Specific rotation = 
$$\frac{1.0}{(\frac{0.0856g}{cm3}) \times (1.0dm)}$$

$$= 11.68g/cm^3 dm^{-1}$$


# **QUESTION 3**

Draw the possible geometric isomers (where possible) for each of the following compounds.

- i. Hexa-2,4-diene
- ii. 2,3-dimethylbut-2-ene

## <u>Answer</u>

(A). Hexa-2, 4-diene



Cis Hexa-2, 4-diene

(B).

Trans Hexa-2, 4-diene

(C). 2, 3-dimethylbut-2-ene

There is no possible Geometric isomer for 2, 3-dimethylbut-2-ene