NAME: IBEM BLESSING ONYEKACHI

DEPARTMENT: NURSING

MATRIC NUMBER: 19/MHS02/062

COURSE CODE: CHM 102

QUESTIONS:

- 1) Name the functional groups present in each of the following molecules
- (i) CH₂=C(OH)HCHO (ii) C₆H₅CH(NH₂)COCH₃ (iii) CH₃C=CHCH(OH)CHO
- 2) A 0.856 g sample of pure (2R, 3R)-tartaric acid was diluted to 10cm3 with water and placed in a 1.0 dm polarimeter tube. the observed rotation at 20° C was $+1.0^{\circ}$. Calculate the specific rotation of (2R, 3R)-tartaric acid.
- 3) Draw the possible geometric isomers (where possible) for each of the following compounds:
- (i) Hexa-2,4-diene (ii) 2,3-Dimethylbut-2-ene

ANSWERS

- 1) (a) Formyl group (Aldehyde) group (CHO)
 - (b) Hydroxyl group –OH
 - (c) Alkene Group (Double bond)
 - (ii) (a) Amino group (-NH₂)
 - (b) Aromatic group (Phenyl group)
 - (c) Keto group (Carbonyl group) C=O
- (iii) (a) Aldehyde group
 - (b) Hydroxyl group
 - (c) Double bond (Alkene group)

2) Concentration (moldm⁻³) =
$$\frac{\text{Conc } (g/\text{dm}^3)}{\text{Molar mass } (g/\text{mol})}$$

$$[\alpha]_{\lambda}^{T} = \underline{\alpha}$$

$$c.$$

Molar mass = 150g/mol

$$0.856g - 10cm^3$$

$$xg - 1000cm^3$$

$$\underline{0.856 \times 1000} = 85.6 \text{g/dm}^3$$

Concentration in g/cm³ =
$$\frac{\text{Concentration (g/dm}^3)}{1000}$$

= $\frac{85.6}{1000}$ = 0.0856g/cm³

Using

$$[\alpha]_{\lambda}^{T} = \underline{\alpha} \quad ; \alpha = 41.0^{\circ} \quad , \quad C = \underline{0.856} = 0.0856 g/cm^{3}$$

$$= \underline{41.0} \quad = 11.68^{\circ}$$

$$0.0856$$

$$\begin{array}{ccc} CH_3 & CH_3 \\ C=C-C=C & H \\ cis- \end{array}$$

$$CH_3$$
 H $C=C-C=C$ CH_3 $trans-$

$$CH_3$$
 CH_3 $CC=C$ CH_3 CH_3

No geometric isomer.