NAME: Adebo Jeremiah Olakunle
MATRIC NUMBER: 19/MHS01/022
DEPARTMENT: MBBS
COLLEGE: MHS.
COURSE CODE: CHEMISTRY 102.
1.Name the functional groups present in each of the following molecules.
a. $\mathrm{CH} 2=\mathrm{C}(\mathrm{OH}) \mathrm{HCHO}$ - aldehyde group(-CHO), Hydroxyl group $(-\mathrm{OH})$ and double bond.
b. $\mathrm{C} 6 \mathrm{H} 5 \mathrm{CH}(\mathrm{NH} 2) \mathrm{COCH} 3$ - phenyl group, carbonyl group ($-\mathrm{C}=\mathrm{O}$) and amine group (NH 2).
c. $\mathrm{CH} 3 \mathrm{C}=\mathrm{CHCH}(\mathrm{OH}) \mathrm{CHO}$ - hydroxyl group(-OH), aldehyde group(-CHO), and double bound.
2. A 0.856 g sample of pure ($2 R, 3 R$)- tatrtaric acid was diluted to 10 cm 3 with water and placed in a 1.0 dm polarimeter tube, the observed rotation at $20^{\wedge} 0$ was $+1.0^{\wedge} 0$. Calculate the specific rotation of ($2 R, 3 R$)tatrtaric acid.

Solution.
0.856 g to $\mathrm{cm} 3=0.856 \mathrm{~g} / 10 \mathrm{~cm} 3=0.0856 \mathrm{~g} / \mathrm{cm} 3$.

To find specific rotation= observed rotation (degrees) /conc.* path length of sample cells in dm $=1.0 / 0.0856^{*} 1=1.0 / 0.0856=11.68=11.7^{\wedge} 0 \mathrm{~g}^{\wedge} _1 \mathrm{~cm}^{\wedge} 3 \mathrm{dm}^{\wedge}-1$.
3.Draw the possible geometric isomers (where possible) for each of the following compounds;
A.Hexa-2,4-diene .

2,3-dimethylbut-2-ene.
Ans: this does not have a geometric isomers because they are two identical groups attached to the same carbon of the double bond.

