Name: EJALONIBU DAVID

OLUFEMI

Department: GEOLOGY

Matric No:19/SCI14/004

Subject: CHM 102

CHM 102 ASSIGNMENT

1&2.

CHM 102	
1-a) CH, = C (OH) HCHO	2) mass of tentratic acids
function al graph present	0.2569
- Double bond chain (Alkene)	vol. of mater diluted in
- st (thydroxyl group)	=ioan3
- of (Altanol)	Rocall,
" (ACROMO!)	mass cone (c)= Mass = 0.7569
DCHECH (NH2) COCH3	VET TOCMS
NH2 CH	= 0.0828glom3
CNH2 - CH3	vol. of polomineter tube = 1dm3
() H O	length of tube = 1dm
	Observed rotation (x) ++1-0
Functional group present:	at 20°C
- Phenologroup into double	Specific rotation [x]=?
bonds	[x] = x
- Amine (NHa)	C×L
- Alkanohe / Ketone C=0	= +1.00
	0.0856gcm3x lclm
c) CH3C=CHCH(OH)CHO	CXJ = +1 =+11.6882°
Fundramed group present	0.0272
Junglovan Groot	
- Double bond (=) - C= Alkanol	
- CH ALKANOT	
- OH Hytroxyl group.	
2 7 7 7	

3A. Hexa-2,4-diene – has only 3 isomers

Isomers

B. 2,3 dimethyl but-2-ene. - does not have geometric isomers because there are two identical groups attached to the same carbon of the double bond.

$$_{\text{CH}_3}^{\text{CH}_3}$$
 C=C $_{\text{CH}_3}^{\text{CH}_3}$ 2,3-dimethylbut-2-ene