CHM 102 ASSIGNMENT:
WAME: OYATOKUH PRECIOUS T.
DEPT: PETROLEUM ENGINEERING:
MATRIC HO: 19/ENGO7/018

ASSINGMENT

- 1. Name the functional group present in each of the following molecules.
- CH₂=C(OH)HCHO: Hydroxyl group or alkanol (OH) and aldehyde , alkanal (CHO) and alkene(double bond)
- ii. C₆H₃CH(NH₂)COCH₃: Amine(NH₂) and ketones(c=o)
- iii.CH₃C=CHCH(OH)CHO: Hydroxyl group or alkanol (OH), aldehyde or alkanal (CHO) and alkene(double bond)
- 2.A O.856g sample of pure (2R,3R) tartaric acid was diluted to 10cm3 with water and placed in a 1.0 dm polarimetre tube the observed rotation at 20°C was +1.0° calculate the specific rotation of (2R,3R) tartaric acid.
- Specific rotation is given by[α] in g¹ cm³ dm¹
- ii. α= observed rotation in degree
- iii .c=concentration of optically active solute in gcm3
- iv. L=path length in dm

Recall that,

$$[\alpha] = \alpha \backslash CL$$

C=0.0856g\cm3,

L=1.0 dm,

 $\alpha = 1.0^{\circ}$.

T=20°c , wavelength=589nm

2
[s] = Specific rotation in g-1 cm' dm-1
UBSELVED 1. D. 4911013 111 CE 91 E.C.
L= Concentration of optically active some in gen
REL911 -449+
T= Tempresure
λ = Wave length 430d = 589nm
NB The most common wavelength used is 589nm
0.8569 10cm
x 9 1000 cm3
0 856 ×1000 = 85 6 91 dm
concentration in girm" = concentration (gitter)
1000
C = 356 = 0 0856 916m
[J]20 = J
[] = 11 689 tm dm1
CS Scanned with

3.draw the possible geometric isomers (where possible) for each of the following compounds

i. Hexa-2,4 diene

ii.2,3 di methyl but 2-ene

