NAME: OSADEBE ANTOINETTE ADAOBI

DEPT: MBBS

COLLEGE: MHS

MATRIC NO: 19/MHS01/360

COURSE CODE: CHM 102

ASSIGNMENT

1. Name the functional groups present in each of the following molecules:

(i) $CH_2=C(OH)HCHO$

Double bond chain---alkene

OH---hydroxyl group

CHO-aldehyde group

(ii) $C_6H_5CH(NH_2)COCH_3$

C₆H₅---phenyl group with double bond

NH₂---amine group

CO---ketone group

(iii) CH₃C=CHCH(OH)CHO

Double bond---alkene

OH---hydroxyl group (alkanol)

CHO---aldehyde group

2. A 0.856g sample of pure (2R,3R)-tartaric acid was diluted to 10cm³ with water and placed in a 1.0dm polarimeter tube. The observed rotation at 20°C was +1.0. calculate the specific rotation of (2R,3R)-tartaric acid.

Solution.

Recall that specific rotation α_{λ}^{T} , is given by

$$\alpha_{\lambda}^{T} = \frac{\alpha}{cXl}$$

Where l=path length

c=concentration in g/dm-3(mass/volume)

 α =observed rotation

specific rotation=
$$\frac{1.0}{1.0X\frac{0.856}{10}}$$

= $\frac{1.0}{0.0856}$ =11.68°g⁻¹cm³dm⁻¹

- 3. Draw the possible geometric isomers (where possible) for each of the following compounds.
 - (i) Hexa-2,4-diene

(ii) 2,3-dimethylbut-2-ene