CHEMISTRY ASSIGNMENT

NAME: UDOH DEIN ARIT BELEMA
DEPARTMENT: COMPUTER ENGINEERING
COURSE TITLE: GENERAL CHEMISTRY II
COURSE CODE: CHM 102
MATRIC NO.: 19/ENG02/069
ASSIGNMENT TITLE: STEREOCHEMISTRY AND FUNCTIONAL GROUP

1. Name the functional group present in each of the following molecules
i. $\mathrm{CH}_{2}=\mathrm{C}(\mathrm{OH}) \mathrm{HCHO}$

The structural formular:

Functional group present are;

- Double bond chain $=($ Alkenes $)$
- OH (Hydoxylymp)
- $/ \mathrm{O}$
${ }_{\mathrm{H}}$ (Alkanol)

ii. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{COCH}_{3}$

The structural formular;

Functional group present

- Phenoyl group $\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)$ with double bonds
- Amine
- Alkanone/ ketone $(\underset{\|}{\mathrm{C}}-\mathrm{R})$

iii. $\mathrm{CH}_{3} \mathrm{CHCH}(\mathrm{OH}) \mathrm{CHO}$

The structural formular;

Functional group present are;

- Alkenes ($\mathrm{C}=\mathrm{C}$)
- Hydroxyl group (off)
- Alkanol (C)

H
2. A 0.856 g sample of pure ($2 \mathrm{R}, 3 \mathrm{R}$)-tatrtaric acid was diluted to 10 cm 3 with water and placed in a 1.0 dm polarimeter tube. the observed rotation at $20^{\circ} \mathrm{C}$ was $+1.0^{0}$. Calculate the specific rotation of (2R, 3R)-tartaric acid.

Solution

Recall;

$$
[\alpha]_{\pi}^{\mathrm{T}}=\frac{\alpha}{1 \alpha \mathrm{C}}
$$

Where;
$\mathrm{L}=$ length of sample fuse
$\mathrm{C}=$ mass/ volume $(\mathrm{g} / \mathrm{dm})$ or $(\mathrm{g} / \mathrm{mol})$
$\alpha=$ observed rotations

$$
S_{\mathrm{r}}=\frac{1.0}{1.0 *(0.856 / 10)}
$$

$$
\begin{aligned}
S_{\mathrm{r}} & =1 / 0.0856 \\
& =11.68
\end{aligned}
$$

3. Draw the possible geometric isomers (where possible) for each of the following compounds:
(i) Hexa-2,4-diene

(ii) 2,3-Dimethylbut-2-ene
$\mathrm{CH}_{3} \quad \mathrm{CH}_{3}$

