NAME: Oluwadamilare Faith Oluwadarasimi

DEPARTMENT: Human Nutrition and Dietetics

MATRIC NO: 19/mhs04/002

ASSIGNMENT TITLE: Stereochemistry and Functional Group

COURSE TITLE: General Chemistry II
COURSE CODE: CHM 102

1. Name the functional groups present in each of the following molecules
(i) $\mathrm{CH} 2=\mathrm{C}(\mathrm{OH}) \mathrm{HCHO}$ (ii) $\mathrm{C} 6 \mathrm{H} 5 \mathrm{CH}(\mathrm{NH} 2) \mathrm{COCH} 3$ (iii) $\mathrm{CH} 3 \mathrm{C}=\mathrm{CHCH}(\mathrm{OH}) \mathrm{CHO}$

Answer

(i) $\mathrm{CH} 2=\mathrm{C}(\mathrm{OH}) \mathrm{HCHO}$

- COH Aldehydes
- OH Alkanols
(ii) $\mathrm{C} 6 \mathrm{H} 5 \mathrm{CH}(\mathrm{NH} 2) \mathrm{COCH} 3$
- NH_{2} Amines
- RCOR' Alkanones
(iii) $\mathrm{CH} 3 \mathrm{C}=\mathrm{CHCH}(\mathrm{OH}) \mathrm{CHO}$
- OH Alkanols
- COH Aldehydes

2. A 0.856 g sample of pure (2R,3R)-tartaric acid was diluted to $10 \mathrm{~cm}^{3}$ with water and placed in a 1.0 dm polarimeter tube. The observed rotation at $20^{\circ} \mathrm{C}$ was +1.00 . Calculate the specific rotation of (2R, 3 R)-tartaric acid.

Specific rotation = Observed rotation (degrees)
Concentration $\left(\mathrm{g} / \mathrm{cm}^{3}\right) \times$ path length of sample cell in (dm)
Specific rotation of (2R,3R)-tartaric acid $=$ \qquad
$\left(0.856 \mathrm{~g} / 10 \mathrm{~cm}^{3}\right) \times 1.0 \mathrm{dm}$
$=20 / 0.0856$
$=233.64^{0} \mathrm{~g}^{-1} \mathrm{~cm}^{3} \mathrm{dm}^{-1}$
3. Draw the possible geometric isomers (where possible) for each of the following compounds: (i) Hexa-2,4-diene (ii) 2,3-Dimethylbut-2-ene

Answer
(i) Hexa-2,4-diene

(ii) 2,3-Dimethylbut-2-ene

It cannot show Geometric Isomerism.

