MATRIC NO: 19/ENG01/017

DEPARTMENT: CHEMICAL ENGINEERING

FLUID MECHANICS ASSIGNMENT

1. A pump delivers $10 \mathrm{dm}^{3} / \mathrm{min}$ with a pressure rise of $\mathbf{1 2} \mathbf{b a r}$. The speed of rotation is 1500 revolution / min and the nominal displacement is $10 \mathrm{~cm}^{3} / \mathrm{rev}$. The Torque input is 12.5 N . Calculate:
i. The volumetric efficiency.
ii. Fluid Power.
iii. The shaft power.
iv. The overall efficiency.

SOLUTION

Idea flow rate $=$ Nominal Displacement \times Speed $=10 \times 1500=15000 \mathrm{~cm}^{3} / \mathrm{min}=15 \mathrm{dm}^{3}$ /min.

Volumetric efficiency $=$ Actual Flow/Ideal Flow $=10 / 15=0.67$ or 67%.
$\mathrm{Q}=\left(10 \times 10^{-3}\right) / 60 \mathrm{~m}^{3} / \mathrm{s}=16.7 \times 10^{-5} \mathrm{~m}^{3} / \mathrm{s}$
$\Delta \mathrm{p}=12 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$
Fluid Power $=\mathrm{Q} \Delta \mathrm{p}=16.7 \times 10^{-5} \times 12 \times 10^{5}=200.04$ Watts
Shaft Power $=2 \pi \mathrm{NT} / 60=2 \pi \times 1500 \times 12.5 / 60=1963.5 \mathrm{Nm}$
Overall Efficiency $=$ F.P. $/$ S.P. $=200.4 / 1963.5=0.0102$ or 1.02%
2. A pump Delivers $35 \mathbf{~ d m}^{3} / \mathbf{m i n}$ with a pressure change of $\mathbf{1 0 0}$ bar. If the overall efficiency is 87%. Calculate the shaft power.

SOLUTION

$\mathrm{Q}=\left(35 \times 10^{-3}\right) / 60 \mathrm{~m}^{3} / \mathrm{s}=58.33 \times 10^{-5} \mathrm{~m}^{3} / \mathrm{s}$
$\Delta \mathrm{P}=100 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$
Fluid Power $=\mathrm{Q} \times \Delta \mathrm{P}=58.33 \times 10^{-5} \times 100 \times 10^{5}=5833$ Watts
Overall Efficiency = Fluid Power / Shaft Power
Shaft Power = Fluid Power / Overall Efficiency

$$
=5833 / 0.87=6704.6 \mathrm{Nm}
$$

3. A pump has a nominal displacement of $50 \mathrm{~cm}^{3} / \mathrm{rev}$ and a pressure rise of $\mathbf{1 0 0}$ bar. If the shaft power is 15 Kilowatts. Calculate the overall Efficiency and Volumetric Efficiency. Taking Actual Flow rate $=\mathbf{3 5} \mathbf{~ d m}^{3} / \mathbf{m i n}$ and speed of rotation $=\mathbf{8 5 0} \mathbf{r}$ p m.

SOLUTION

Idea flow rate $=$ Nominal Displacement \times Speed $=50 \times 850=42500 \mathrm{~cm}^{3} / \mathrm{min}=42.5 \mathrm{dm}^{3}$ /min.

Volumetric efficiency $=$ Actual Flow/Ideal Flow $=35 / 42.5=0.82$ or 82%. $\mathrm{Q}=\left(35 \times 10^{-3}\right) / 60 \mathrm{~m}^{3} / \mathrm{s}=58.33 \times 10^{-5} \mathrm{~m}^{3} / \mathrm{s}$
$\Delta \mathrm{p}=100 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$
Fluid Power $=\mathrm{Q} \Delta \mathrm{p}=58.33 \times 10^{-5} \times 100 \times 10^{5}=5833$ Watts
Shaft Power $=15 \mathrm{~kW}=15000 \mathrm{Nm}$
Overall Efficiency $=$ F.P. $/$ S.P. $=5833 / 15000=0.389$ or 38.9%
4. Water is drawn from a reservoir in which the water level is $2,4000 \mathrm{~cm}$ above the datum at the rate of 13 liters/sec. The Outlet of the pipe is at datum level and is fitted a nozzle to produce a high speed jet in order to drive a turbine of pelton wheel type. If the velocity of jet is $\mathbf{6 6} \mathbf{~ m} / \mathrm{sec}$. Calculate
i. Power of Jet
ii. Power Supplied from reservoir
iii. Head used to overcome Losses.
iv. Efficiency of the pipeline and nozzle in transmitting operation.

SOLUTION

5. Oil of specific gravity 0.89 is drawn from a reservoir in which the oil is $\mathbf{3 0 , 0 0 0} \mathbf{~ c m}$ above the datum at the rate 220 Litres $/ \mathrm{sec}$. If the velocity of jet is $7 \mathrm{~m} \mid s e c$. Calculate
i. Power of Jet
ii. Power supplied from reservoir
iii. Head used to overcome Losses
iv. Efficiency of the pipeline and nozzle in transmitting operation.

SOLUTION

6. A fountain sends a stream of water 20 m up into the air. If the base of the stream is 10 cm in diameter, what power is required to send the water to this height?

SOLUTION

Known data:
$\mathrm{h}=20 \mathrm{~m}, \mathrm{~d}=10 \mathrm{~cm}=0.10 \mathrm{~m}$
$\rightarrow \mathrm{A}=(\pi / 4) \mathrm{d}^{2}=0.7854(0.10 \mathrm{~m})^{2}=7.854 \times 10^{-3} \mathrm{~m}^{2}$
$V_{f}=0$

Unknowns:
'W=?

The speed of the water at the upper end of the stream is zero. Then, the initial speed of the water is defined by the following expression:
$\mathrm{V}^{2}{ }_{\mathrm{f}}=\mathrm{V}_{\mathrm{i}}{ }^{2}-2 \mathrm{gh}$
$V_{i}=\sqrt{ } V^{2}{ }_{f}+2 g h$
$\mathrm{V}_{\mathrm{i}}=\sqrt{ } 0^{2}+2(9.8 \mathrm{~m} / \mathrm{s} 2) *(20 \mathrm{~m})=19.80 \mathrm{~m} / \mathrm{s}$

The flow rate is equal to the speed through the area.
$\mathrm{Q}=\mathrm{v}^{*} \mathrm{~A}=(19.80 \mathrm{~m} / \mathrm{s})^{*}(7.854 \times 10-3 \mathrm{~m} 2)=0.1555 \mathrm{~m} 3 / \mathrm{s}$
The hydraulic power required to drive the water to a height h is defined by the following expression:
$\cdot \mathrm{W}=\rho \mathrm{gQh}=\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)^{*}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)^{*}\left(0.1555 \mathrm{~m}^{3} / \mathrm{s}\right)^{*}(20 \mathrm{~m})=30478 \mathrm{kgm}^{2} / \mathrm{s}^{3}=30 \times 10^{3} \mathrm{~W}$
The power required is:
$\cdot \mathrm{W}=30 \times 10^{3} \mathrm{~W}$.
7. A Venturimeter with an entrance diameter of 0.3 m and a throat diameter of $\mathbf{0 . 2 m}$ is used to measure the volume of gas flowing through a pipe. The discharge coefficient of the meter is $\mathbf{0 . 9 6}$. Assuming the specific weight of the gas to be constant at $19.62 \mathrm{~N} / \mathrm{m}^{3}$, calculate the volume flowing when the pressure difference between the entrance and the throat is measured as 0.06 m on a water U -tube manometer.

SOLUTION

$\rho_{\mathrm{g}} \mathrm{g}=19.62 \mathrm{~N} / \mathrm{m}^{3}$
$\mathrm{C}_{\mathrm{d}}=0.96$
$\mathrm{d}_{1}=0.3 \mathrm{~m}$
$\mathrm{d}_{2}=0.2 \mathrm{~m}$
Calculate; Q ,

$$
\mathrm{u}_{1}=\mathrm{Q} / 0.0707, \quad \mathrm{u}_{2}=\mathrm{Q} / 0.0314
$$

For the manometer;

$$
\begin{aligned}
& \mathrm{P}_{1}+\rho_{\mathrm{g}} \mathrm{gZ}=\mathrm{P}_{2}+\rho_{\mathrm{g}} \mathrm{~g}^{*}\left(\mathrm{z}_{2}-\mathrm{R}_{\mathrm{p}}\right)+\rho_{\mathrm{w}} \mathrm{~g} R_{\mathrm{p}} \\
& \mathrm{P}_{1}-\mathrm{P}_{2}=19.62^{*}\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)+587.423
\end{aligned}
$$

For the Venturimeter;

$$
\begin{array}{r}
\frac{P_{1}}{\rho_{g} g z}+\frac{u_{1}^{2}}{2 g}+z_{1}=\frac{p_{2}}{\rho_{g} g}+\frac{u_{2}^{2}}{2 g}+z_{2} \\
\mathrm{P}_{1}-\mathrm{P}_{2}=19.62^{*}\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)+0.803 \mathrm{u}_{2}^{2}
\end{array}
$$

Combining (1) and (2);

$$
\begin{aligned}
& 0.803 \mathrm{u}_{2}^{2}=587.423 \\
& \mathrm{u}_{\text {2ideal }}=27.047 \mathrm{~m} / \mathrm{s} \\
& \mathrm{Q}_{\text {ideal }}=27.047 \times \Pi^{*}\left(\frac{0.2}{2}\right)^{2}=0.85 \mathrm{~m}^{3} / \mathrm{s} \\
& \mathrm{Q}=\mathrm{C}_{\mathrm{d}} * \mathrm{Q}_{\text {ideal }}=0.96 \times 0.85=0.816 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

8. A Venturimeter of throat diameter 0.076 m is fitted in a 0.152 m diameter vertical pipe in which liquid of relative density 0.8 flows downwards. Pressure gauges are fitted to the inlet and to the throat sections. The throat being 0.914 m below the inlet. Taking the coefficient of the meter as 0.97 find the discharge a) when the pressure gauges read the same b) when the inlet gauge reads $15170 \mathrm{~N} / \mathrm{m}^{2}$ higher than the throat gauge.

SOLUTION

$$
\begin{aligned}
& \mathrm{d}_{1}=0.152 \mathrm{~m}, \mathrm{~d}_{2}=0.076 \mathrm{~m}, \mathrm{~A}_{1}=0.01814 \mathrm{~m}, \mathrm{~A}_{2}=0.00454 \mathrm{~m}, \rho=800 \mathrm{~kg} / \mathrm{m}^{3} \\
& \mathrm{C}
\end{aligned}
$$

$$
d=0.97
$$

Apply Bernoulli;

$$
\frac{P_{1}}{\rho_{g} g Z}+\frac{u_{1}^{2}}{2 g}+z_{1}=\frac{p_{2}}{\rho_{g} g}+\frac{u_{2}^{2}}{2 g}+z_{2}
$$

a. $P_{1}=P_{2}$

$$
\frac{u_{1}^{2}}{2 g}+z_{1}=\frac{u_{2}^{2}}{2 g}+z_{2}
$$

By continuity;

$$
\begin{gathered}
\mathrm{Q}=\mathrm{u}_{1} \mathrm{~A}_{1}=\mathrm{u}_{2} \mathrm{~A}_{2} \\
\mathrm{u}_{2}=\mathrm{u}_{1} \frac{A_{1}}{A_{2}}=\mathrm{u}_{1} 4 \\
\frac{u_{1}^{2}}{2 g}+0.914=\frac{16 u_{1}^{2}}{2 g} \\
\mathrm{u}_{1}=\sqrt{ } \frac{0.914 \times 2 \times 9.81}{15}=1.0934 \mathrm{~m} / \mathrm{s} \\
\mathrm{Q}=\mathrm{C}_{\mathrm{d}} \mathrm{~A}_{1} \mathrm{u}_{1} \\
\mathrm{Q}=0.96 \times 0.01814 \times 1.0934=0.019 \mathrm{~m}^{3} / \mathrm{s}
\end{gathered}
$$

b.

$$
\begin{aligned}
& \quad \mathrm{P}_{1}-\mathrm{P}_{2}=15170 \\
& \frac{P_{1}-P_{2}}{\rho g}=\frac{u_{2}^{2}-u_{1}^{2}}{2 g}-0.914 \\
& \quad \frac{P_{1}-P_{2}}{\rho g}=\frac{Q^{2}\left(220.43^{2}-55.11^{2}\right)}{2 g}-0.914 \\
& 55.8577=\mathrm{Q}^{2} *\left(220.43^{2}-55.11^{2}\right) \\
& \mathrm{Q}=0.035 \mathrm{~m}^{3} / \mathrm{s} .
\end{aligned}
$$

9. The water is flowing through a tapering pipe having diameter 300 mm and 150 mm at section $1 \& 2$ respectively. The discharge through the pipe is 40lit/sec. the section 1 is 10 m above datum and section 2 is $\mathbf{6 m}$ above datum. Find the intensity of pressure at section 2 , if that at section 1 is $400 \mathrm{kN} / \mathrm{m}^{2}$.

SOLUTION

At section 1;
$\mathrm{D}_{1}=300 \mathrm{~mm}=0.3 \mathrm{~m}$, Area $\mathrm{a}_{1}=\pi / 4 * 0.32=0.0707 \mathrm{~m}^{2}$, Pressure $\mathrm{p}_{1}=400 \mathrm{kN} / \mathrm{m}^{2}$, Height of upper end above the datum, $\mathrm{z}_{1}=10 \mathrm{~m}$

At section 2;
$\mathrm{D}_{2}=150 \mathrm{~mm}=0.15 \mathrm{~m}$, Area $\mathrm{A}_{2}=(\pi / 4) * 0.152=0.01767 \mathrm{~m}^{2}$,

Height of lower end above the datum, $z_{2}=6 \mathrm{~m}$
Rate of flow (that is discharge) $\mathrm{Q}=40 \mathrm{lit} / \mathrm{sec}=40 / 1000\left(1\right.$ litre $\left.=1 \mathrm{~m}^{3} / \mathrm{sec}\right)=0.04 \mathrm{~m}^{3} / \mathrm{sec}$ Intensity of pressure at section 2, p_{2}

As the flow is continuous,

$$
\mathrm{Q}=\mathrm{A}_{1} \mathrm{~V}_{1}=\mathrm{A}_{2} \mathrm{~V}_{2} \text { (Continuity equation) }
$$

Therefore, $\mathrm{V}_{1}=\mathrm{Q} / \mathrm{A}_{1}=0.04 / 0.0707=0.566 \mathrm{~m} / \mathrm{sec}$ and $\mathrm{V}_{2}=\mathrm{Q} / \mathrm{A}_{2}=0.04 / 0.01767=2.264 \mathrm{~m} / \mathrm{sec}$ Apply Bernoulli's equation at sections $1 \& 2$, We get, $\mathrm{p}_{1} / \mathrm{w}+\mathrm{v}_{1}{ }^{2} / 2 \mathrm{~g}+\mathrm{Z}_{1}=\mathrm{p}_{2} / \mathrm{w}+\mathrm{v}_{2}{ }^{2} / 2 \mathrm{~g}+\mathrm{z}_{2}$
and $\mathrm{p}_{2} / \mathrm{w}=\mathrm{p}_{1} / \mathrm{w}+\left(\mathrm{v}_{1}{ }^{2}-\mathrm{v}_{2}{ }^{2} / 2 \mathrm{~g}\right)+\mathrm{z}_{1}-\mathrm{Z}_{2}=(400 / 9.81)+1 /(2 * 9.81) *(0.5662-2.2642)+(10-6)$
$=40.77-0.245+4\left(\right.$ as $\left.\mathrm{w}=\rho * \mathrm{~g}=1000 \times 9.81 \mathrm{~N} / \mathrm{m}^{3}\right)=44.525 \mathrm{~m}=9.81 \mathrm{kN} / \mathrm{m}^{3}$
$\mathrm{P}_{2}=44.525 * \mathrm{w}=44.525 * 9.81=436.8 \mathrm{kN} / \mathrm{m}^{2}$
10. A submarine moves horizontally in sea and has its axis 15 m below the surface of water. A pitot tube properly placed just in front of the submarine and along its axis is connected to the $\mathbf{2}$ limbs of U-tube containing mercury. The difference in mercury level is found to be 170 mm . Find the speed of the submarine knowing that the specific gravity of mercury is $\mathbf{1 3 . 6}$ and that of sea water is $\mathbf{1 . 0 2 6}$ with respect of fresh water.

SOLUTION

$$
\begin{gathered}
\mathrm{V}=c \sqrt{2} g r\left(\frac{\text { spgr }_{m}}{s}-1\right) \\
\mathrm{X}=\frac{170}{1000}=0.17 \mathrm{~m} \\
\operatorname{spgr}_{m}=13.6 \\
\mathrm{Spgr}_{\mathrm{s}}=1.026 \\
\mathrm{C}=1 \\
\mathrm{~V}=1 * \sqrt{2} \times 9.81 \times 6.17 \times\left(\frac{13.6}{1.026}-1\right)
\end{gathered}
$$

$$
\mathrm{V}=6.4 \mathrm{~m} / \mathrm{s}
$$

