NAME: TUNDE-ADETULA SIMISOLUWA MATRIC NUMBER: 18/ENG08/022 DEPARTMENT: BIOMEDICAL ENGINEERING COURSE: HUMAN PHYSIOLOGY (PHS 212) DATE: MAY, 2020

PHYSIOLOGICAL ADAPTATIONS OF THE FEMALE TO PREGNANCY

Pregnancy is a unique period in a woman's lifetime. A number of anatomic, physiologic, biochemical and psychological changes take place. These changes may easily be misinterpreted by physicians who lack experience in regards to pregnancy effects on a woman's body. It is important that physicians caring for women understand the implications of these physiological changes in order to avoid any diagnostic errors and errors of management.

1. SKIN CHANGES

A number of changes take place in the skin of pregnant women. Mechanical stretching of the skin over the abdomen and breasts can lead to striae. The increased levels of estrogen and progesterone have also been implicated. Usually striae remain permanently with some change in color. Prevention may be achieved with moisturizing creams, especially those containing lanolin and other oily substances. It should be realized, however, that striae may develop despite any preventative measures.

Vascular spider nevi and palmar erythema happen also during pregnancy. There is no clear explanation for these changes, but they most likely represent the result of vasodilatation that happens in the skin during pregnancy. Chloasma and other pigmented lesions can happen as a result of increased melanocytestimulating hormone activity which in turn is a result of increased estrogen and progesterone levels. These lesions usually begin at about five to six months gestation. One way that these lesions may be prevented is by the use of screening agents and avoidance of direct sunlight. Skin pruritus affects a number of women and it may be related to increased retention of bile salts in the skin secondary to estrogen effects. Scratching of the skin can then lead to infected excoriations. Local measures with anti-pruritic creams and lotions usually are sufficient.

2. CHANGES IN THE GASTROINTESTINAL SYSTEM

Nausea and vomiting are the most frequent complaints involving the gastrointestinal system and usually happen in early pregnancy while heartburn happen primarily in late pregnancy. The gums become hyperemic and edematous during pregnancy and tend to bleed. The muscular wall of the esophagus is relaxed and this may cause reflux, which in turn can lead to esophagitis and heartburn. The stomach and the intestines have decreased motility presumably due to the effect of progesterone on smooth muscle contractility. This causes an increase in the time that it takes for the stomach to empty. Reduced gastric secretion has also been documented and it could account for the improvement of peptic ulcers sometimes observed in pregnancy. Decreased motility of the large intestine may lead to constipation. The liver is affected significantly by pregnancy. Cholestatic jaundice is considered to be the result of estrogen effect on elimination of bilirubin by the liver. The effect of estrogens also, is to increase protein synthesis in the liver, which leads to increased production of fibrinogen and binding proteins. The liver enzymes are usually unaffected with the exception of alkaline phosphatase, which is increased at approximately two-fold to four-fold that is a result of a placental production. Pregnancy increases the size and decreases the motility of the gall bladder. The decreasing motility and increase in volume, combined with changes in the bile's composition, explain the correlation between the incidence of cholelithiasis and pregnancy.

3. CARDIOVASCULAR CHANGES

Of all changes that happen in pregnancy, the single most important is the one involving the cardiovascular system. Adequate cardiovascular adaptation secures good

placental development and thus appropriate fetal growth. In brief, the cardiovascular changes involve a substantial change in the blood volume, cardiac output, heart rate, systemic arterial blood pressure, systemic vascular resistance, oxygen consumption and alterations in regional blood flow of various organ systems.

4. BLOOD VOLUME

Significant increases in the blood volume start taking place in the first trimester and continue until the mid third trimester, at approximately the 32nd to the 34th week. Beyond this point in gestation, the blood volume plateaus. This pattern was established with studies that kept the patients in the leftlateral position to avoid vena cava compression. However, studies that kept the patient in the supine position had controversial results indicating a decline in the blood volume after 34 to 36 weeks. The average absolute increase in blood volume during pregnancy is about 1600 ml and in terms of percent change one should expect a 40 to 50 percent increase above prepregnancy levels. The increase in the blood volume is achieved by a combination of increases in the plasma volume and the RBC mass. The calculated plasma volume expansion is approximately 1300 ml and the volume of the RBC increases about 400 ml. This discordance in the change between the cellular elements of the blood and the liquid portion leads to the so called "physiologic anemia of pregnancy".

The mechanisms leading to hypervolemia in pregnancy are still not entirely understood and seem to be multifactorial. Increased estrogen levels in pregnancy cause increased production of renin from the kidneys, the uterus and the liver and thus cause elevated renin plasma levels. The increase in renin, which stimulates aldosterone secretion, is associated with sodium retention and an increase in total body water. The roll of atrial natriuretic factor (ANF) in mediating changes in fluid balance during gestation is still not clearly understood. On the other hand increased levels of human chorionic somatomammotropin and prolactin increase the amount of erythropoiesis and thus causes the necessary increase in the red blood cell mass. The increase in blood volume with pregnancy appears to serve the essential physiologic needs of both the mother and fetus. It ensures adequate supplies required for normal fetal growth and oxygenation even under circumstances that affect the maternal cardiac output (inferior vena cava compression). This increased blood volume also helps normal pregnant women to withstand hemorrhage equal to the volume of blood added to the circulation during the course of the normal pregnancy without any signs of decompensation.

5. BLOOD FLOW CHANGES IN VARIOUS ORGANS

The most profound changes in regional blood flow occur in the uterus with a 5 to 10 fold increase. This change starts early in pregnancy and continues until almost term. Approximately 20% of the maternal cardiac output perfuses the uterine vessels (placental and nonplacental). The kidneys also demonstrate substantial increase of the regional blood flow as much as 30 to 80 percent and at the same time a 50 percent increase in glomerular filtration rate is noted. The regional blood flow in the extremities also increases and more so in the hands than the legs. As it was mentioned previously, there is a significant dilatation in the skin vessels which leads to an increase in the regional blood flow. These changes in the skin vessels may cause warm skin, clammy hands, vascular spiders, and palm erythema. The liver circulation is not affected very much and the same is true for the brain blood flow which is autoregulated. The blood flow to the breast is increased during pregnancy to prepare the breast for lactation. The effect of pregnancy on coronary blood flow is still unknown. It is safe, however, to speculate that an increase may happen since augmentation of cardiac function is present during pregnancy.

6. POSTURE AND RENAL FUNCTION IN PREGNANCY

In non-pregnant individuals the up-right posture causes extra cellular fluid to shift to the legs, resulting in a relative decrease in central blood volume. This response is exaggerated during pregnancy and a similar response also occurs when the supine position is assumed. The extent of the change is a 50 to 60 percent decrease in urine flow and sodium excretion in supine recumbency versus lateral recumbency, accompanied by 20 percent decrease in renal plasma flow and glomerular filtration. The underlying patho-physiology is likely to be inferior vena caval obstruction, resulting in pulling of blood in the dilated veins of the lower extremities, dependent edema, decreased venous return, decreased central blood volume, increased aldosterone production, and ultimately decreased urinary excretion of sodium and water. In summary, one has to remember that the normal values of renal function are altered appreciably and that values normal to the non-pregnant could indicate substantial renal impairment in the pregnant patient.