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ASSIGNMENTS 
1. Discuss the role of kidney in glucose homeostasis 

The kidneys play an important role in regulating glucose homeostasis through utilization of glucose, gluconeogenesis, and glucose reabsorption via sodium glucose co-transporters (SGLTs) and glucose transporters

Renal Gluconeogenesis

The kidney is considered as 2 separate organs; the renal medulla is characterized mainly by glucose utilization and the renal cortex is responsible for glucose release. The separation of these activities represents the consequence of differences in the distribution of numerous enzymes along the nephron. The cells in the renal medulla can use only glucose for their needs (like the brain) and they have enzymes capable of glucose-phosphorylation and glycolysis. They can therefore phosphorylate important amounts of glucose and accumulate glycogen but, because these cells do not have glucose-6-phosphatase or any other gluconeogenic enzymes, they are unable to release glucose into the bloodstream. Moreover, the cells in the renal cortex have gluconeogenic enzymes and they can produce and release glucose into the circulation. However these cells cannot synthesize glycogen because they have little phosphorylating capacity.

After a 16-h overnight fast, approximately 10 µmol ⁄ (kg /min) of glucose is released into the circulation . Almost 50% of this is the result of glycogenolysis from the liver stocks and the other half is produced by liver and kidney gluconeogenesis. The renal cortex (like the liver) contains gluconeogenic enzymes and it can synthesize glucose-6-phosphate from precursors (lactate, glutamine, glycerol and alanine). Because it contains glucose-6-phosphatase, it is able to release glucose into the blood stream [18] and the human liver and kidneys are the only organs that can perform gluconeogenesis. Therefore, after an overnight fast, the liver produces 75–80% of glucose released into the circulation and the remaining 20–25% is derived from the kidneys.

Several studies have indicated that human kidneys and liver provide approximately the same amounts of glucose through gluconeogenesis in postabsorptive period. If the duration of fasting is increased, the glycogen stores are depleted and gluconeogenesis produces all the glucose released

GLUCOSE REABSORPTION 

Apart from the important role in gluconeogenesis and the role of renal cortex in glucose uptake, the kidneys contribute to glucose homeostasis by filtering and reabsorbing glucose. In normal conditions, the kidneys can reabsorb as much glucose as possible, the result being a virtually glucose free urine. Approximately 180 grams of glucose are filtered by the glomeruli from plasma, daily but all of this quantity is reabsorbed through glucose transporters that are present in cell membranes located in the proximal tubules.

These glucose transporters have a limited capacity of reabsorption. If this capacity is exceeded, glucose usually appears in the urine. The tubular maximum for glucose (TmG), the term used for the maximum capacity, can vary from 260 to 350 mg/min/1.73 m2 in healthy subjects. It corresponds to blood glucose levels of 180-200 mg/dL [24]. When the blood glucose is very high and the TmG is reached, the transporters cannot reabsorb all the glucose and glucosuria occurs. Nevertheless, there can be slight differences between the nephrons and the inaccurate nature of biological systems may potentially lead to the development of glucosuria when blood glucose is below TmG. Glucosuria may occur at lower plasma glucose levels in certain conditions of hyperfiltration (eg. pregnancy), but as a consequence of hyperfiltration and not of significant hyperglycemia.

2. DISCUSS THE PROCESS OF MICTURITION 

Micturition or urination is the process of expelling urine from the bladder. This act is also known as voiding of the bladder. The excretory system in humans includes a pair of kidneys, two ureters, a urinary bladder and a urethra. The kidneys filter the urine and it is transported to the urinary bladder via the ureters where it is stored till its expulsion. The process of micturition is regulated by the nervous system and the muscles of the bladder and urethra. The urinary bladder can store around 350-400ml of urine before it expels it out.

Stages of Micturition

The urinary bladder has two distinct stages or phases:

1. Resting or filling stage

2. Voiding stage

1.Resting or Filling Stage; It is in this phase of the bladder that the urine is transported from the kidneys via the ureters into the bladder. The ureters are thin muscular tubes that arise from each of the kidneys and extend downwards where they enter the bladder obliquely.

The oblique placement of the ureters in the bladder wall serves a very important function. The opening of the ureter into the urinary bladder is not guarded by any sphincter or muscle. Therefore, this oblique nature of opening prevents the urine from re-entering the ureters. At the same time, the main muscle of the urinary bladder, the detrusor muscle, is relaxing allowing the bladder to distend and accommodate more urine.

2.Voiding Stage; During this stage, both the urinary bladder and the urethra come into play together. The detrusor muscle of the urinary bladder which was relaxing so far starts to contract once the bladder’s storage capacity is reached.

The urethra is controlled by two sets of muscles: The internal and external urethral sphincters. The internal sphincter is a smooth muscle whereas the external one is skeletal. Both these sphincters are in a contracted state during the filling stage.As mentioned earlier, the process of micturition is governed by both the nervous and muscular systems. Within the nervous system, the process is governed by the autonomous nervous system and the somatic system. Once the urinary bladder reaches its maximum capacity, the stretch receptors in the walls of the bladder send an impulse via the pelvic nerve to the brain via the spinal cord.

The micturition reflex is ultimately generated from the level of the spinal cord after it receives reflexes from the pontine region in the brain. Once the bladder and the urethra receive the signals to empty the bladder, the two sphincters relax and the detrusor muscle causes the contractions of the bladder.Along with these muscles, the muscles of the abdomen also play a role by putting pressure on the bladder wall. This leads to complete emptying of the bladder

3. EXPLAIN JUXTAGLOMERULAR APPARATUS 

The juxtaglomerular apparatus is a specialized structure formed by the distal convoluted tubule and the glomerular afferent arteriole.It is located near the vascular pole of the glomerulus and its main function is to regulate blood pressure and the filtration rate of the glomerulus.

The juxtaglomerular apparatus consists of three cell types. They are the maculadensa, a part of the distal convoluted tubule of the same nephron. juxtaglomerular cells, which secrete renin, specialized smooth muscle cells of the afferent arteriole, which supplies blood to the glomerulusThe macula densa is a collection of specialized epithelial cells in the distal convoluted tubule that detect sodium concentration of the fluid in the tubule. In response to elevated sodium, the macula densa cells trigger contraction of the afferent arteriole, reducing flow of blood to the glomerulus and the glomerular filtration rate. The juxtaglomerular cells, derived from smooth muscle cells, of the afferent arteriole secrete renin when blood pressure in the arteriole falls. Renin increases blood pressure via the renin-angiotensin-aldosterone system. Lacis cells, also called extraglomerular mesangial cells, are flat and elongated cells located near the macula densa. Their function remains unclear

4. THE ROLE OF KIDNEY IN THE REGULATION OF BLOOD PRESSURE 

The kidneys play a central role in the regulation of arterial blood pressure. A large body of experimental and physiological evidence indicates that renal control of extracellular volume and renal perfusion pressure are closely involved in maintaining the arterial circulation and blood pressure. Renal artery perfusion pressure directly regulates sodium excretion; a process known as pressure natriuresis, and influences the activity of various vasoactive systems such as the renin–angiotensin–aldosterone (RAS) system [9]. Along with vessel morphology, blood viscosity is one of the key factors influencing resistance and hence blood pressure. A key modulator of blood viscosity is the renin-angiotensin system (RAS) or the renin-angiotensin-aldosterone system (RAAS), a hormone system that regulates blood pressure and water balance.

The blood pressure in the body depends upon:

• The force by which the heart pumps out blood from the ventricles of the heart - and this is dependent on how much the heart muscle gets stretched by the inflowing blood into the ventricles.

• The degree to which the arteries and arterioles constrict-- increases the resistance to blood flow, thus requiring a higher blood pressure.

• The volume of blood circulating round the body; if the volume is high, the ventricles get more filled, and the heart muscle gets more stretched.

The kidney influences blood pressure by:

•
Causing the arteries and veins to constrict

•
Increasing the circulating blood volume

Specialized cells called macula densa are located in a portion of the distal tubule located near and in the wall of the afferent arteriole. These cells sense the Na in the filtrate, while the arterial cells (juxtaglomerular cells) sense the blood pressure. When the blood pressure drops, the amount of filtered Na also drops. The arterial cells sense the drop in blood pressure, and the decrease in Na concentration is relayed to them by the macula densa cells. The juxtaglomerular cells then release an enzyme called renin.

Renin converts angiotensinogen (a peptide, or amino acid derivative) into angiotensin-1. Angiotensin-1 is thereafter converted to angiotensin-2 by an angiotensin-converting enzyme (ACE), found in the lungs. Angiotensin-2 causes blood vessels to contract -- the increased blood vessel constrictions elevate the blood pressure. When the volume of blood is low, arterial cells in the kidneys secrete renin directly into circulation. Plasma renin then carries out the conversion of angiotensinogen released by the liver to angiotensin-1. Angiotensin-1 is subsequently converted to angiotensin-2 by the enzyme angiotensin converting enzyme found in the lungs. Angiotensin-2m a potent vasoactive peptide causes blood vessels to constrict, resulting in increased blood pressure. Angiotensin-2 also stimulates the secretion of the hormone aldosterone from the adrenal cortex.

Aldosterone causes the tubules of the kidneys to increase the reabsorption of sodium and water into the blood. This increases the volume of fluid in the body, which also increases blood pressure. If the renin-angiotensin-aldosterone system is too active, blood pressure will be too high. Many drugs interrupt different steps in this system to lower blood pressure. These drugs are one of the main ways to control high blood pressure (hypertension), heart failure, kidney failure, and harmful effects of diabetes. It is believed that angiotensin-1 may have some minor activity, but angiotensin-2 is the major bioactive product. Angiotensin-2 has a variety of effects on the body: throughout the body, it is a potent vasoconstrictor of arterioles.

While The distal tubule cells (macula densa) sense the Na in the filtrate, and the arterial cells (juxtaglomerular cells) sense the blood pressure. Studies have shown that chronic infusion of low doses of angiotensin II directly into the kidney caused hypertension with impaired natriuresis due to a shift of the pressure-natriuresis relationship . It is also believed that the existence of local and independent control of RAS activity within the kidney influencing sodium excretion and blood pressure regulation. In this hypothesis, increased circulating levels of angiotensin II are associated with accumulation of angiotensin peptides in the kidney, upregulated expression of angiotensinogen, the primary RAS substrate, in proximal tubule epithelium, and increased excretion of angiotensinogen and angiotensin peptides in urine . In this feed-forward pathway, angiotensin II acting via type 1 angiotensin (AT1) receptors in the kidney induces local activation of the RAS inside the kidney and increases generation of angiotensin II in the lumen of renal tubules, resulting in autocrine and paracrine stimulation of epithelial transporters.

5. ROLE OF KIDNEY IN CALCIUM BALANCE 

Total serum calcium consists of ionized, protein bound, and complexed fractions (approximately 48%, 46%, and 7%, respectively). The complexed calcium is bound to molecules such as phosphate and citrate. The ultrafilterable calcium equals the total of the ionized and complexed fractions. Normal total serum calcium is approximately 8.9–10.1 mg/dl (about 2.2–2.5 mmol/l). Calcium can be bound to albumin and globulins. For each 1.0-g/dl decrease in serum albumin, total serum calcium decreases by 0.8 mg/dl. For each 1.0-g/dl decrease in serum globulin fraction, total serum calcium decreases by 0.12 mg/dl. Acute alkalosis decreases the ionized calcium. Because both hydrogen ions and calcium are bound to serum albumin, in the presence of metabolic alkalosis, bound hydrogen ions dissociate from albumin, freeing up the albumin to bind with more calcium and thereby decreasing the freely ionized portion of the total serum calcium. For every 0.1 change in pH, ionized calcium changes by 0.12 mg/dl (6).

In humans who have a GFR of 170 liters per 24 hours, roughly 10 g of calcium is filtered per day. The amount of calcium excreted in the urine usually ranges from 100 to 200 mg per 24 hours; hence, 98%–99% of the filtered load of calcium is reabsorbed by the renal tubules. Approximately 60%–70% of the filtered calcium is reabsorbed in the proximal convoluted tubule, 20% in the loop of Henle, 10% by the distal convoluted tubule, and 5% by the collecting duct. The terminal nephron, although responsible for the reabsorption of only 5%–10% of the filtered calcium load, is the major site for regulation of calcium excretion (1) (

The reabsorption of calcium in the proximal convoluted tubule parallels that of sodium and water. Proximal tubular calcium reabsorption is thought to occur mainly by passive diffusion and solvent drag. This is based on the observation that the ratio of calcium in the proximal tubule fluid to that in the glomerular filtrate is 1:1.2. The passive paracellular pathways account for approximately 80% of calcium reabsorption in this segment of the nephron. A small but significant component of active calcium transport is observed in the proximal tubules. The active transport of calcium proceeds in a two-step process, with calcium entry from the tubular fluid across the apical membrane and exit though the basolateral membrane. This active transport is generally considered to constitute 10%–15% of total proximal tubule calcium reabsorption and it is mainly regulated by parathyroid hormone (PTH) and calcitonin .

No reabsorption of calcium occurs within the thin segment of the loop of Henle (Figure 3A). In the thick ascending limb of the loop of Henle, 20% of the filtered calcium is reabsorbed largely by the cortical thick ascending limb, through both transcellular and paracellular routes. In the thick ascending limb.
