ANSWERS ARE BELOW THE QUESTIONS

F12-9. The particle travels along a straight track such that its position is described by the $s-t$ graph. Construct the $v-t$ graph for the same time interval.

F12-9
F12-10. A van travels along a straight road with a velocity described by the graph. Construct the $s-t$ and $a-t$ graphs during the same period. Take $s=0$ when $t=0$.

F12-11. A bicycle travels along a straight road where its velocity is described by the $v-s$ graph. Construct the $a-s$ graph for the same time interval.

F12-12. The sports car travels along a straight road such that its position is described by the graph. Construct the $v-t$ and $a-t$ graphs for the time interval $0 \leq t \leq 10 \mathrm{~s}$.

F12-13. The dragster starts from rest and has an acceleration described by the graph. Construct the $v-t$ graph for the time interval $0 \leq t \leq t^{\prime}$, where t^{\prime} is the time for the car to come to rest.

F12-14. The dragster starts from rest and has a velocity described by the graph. Construct the $s-t$ graph during the time interval $0 \leq t \leq 15 \mathrm{~s}$. Also, determine the total distance traveled during this time interval.

NB: Please note, some of the graphs are drawn with free hand because they were quite difficult to draw with software.

ANSWERS

Question 1

$$
\begin{aligned}
& V=d s / d t \\
& V=1.5 t^{2} \\
& V=1.5(6)^{2} \\
& V=1.5 \times 36=54 \mathrm{~m} / \mathrm{s} \\
& \text { Max velocity }=54 \mathrm{~m} / \mathrm{s} @ 6 \mathrm{sec} \\
& \text { When } \mathrm{s}=128, V=\mathrm{ds} / \mathrm{dt} \\
& V=0
\end{aligned}
$$

Question 2

i). $V=-4 t+80$
$\mathrm{V}=\mathrm{ds} / \mathrm{dt}$
$\mathrm{ds}=\mathrm{Vdt}$
$\mathrm{ds}=(-4 \mathrm{t}+80) \mathrm{dt}$
integrating;
$\int_{0}^{s} d s=\int_{0}^{t}(-4 \mathrm{t}+80) \mathrm{dt}$
$|s|_{0}^{S}=|-4 \mathrm{t} 2 / 2+80 \mathrm{t}|_{0}^{t}$
$S=-2 t^{2}+80 t$
$@ t=20 \rightarrow s=-2(20)^{2}+80(20)=800 \mathrm{ft}$.
ii). $a=d v / d t$
$\mathrm{a}=\frac{d}{d t}(-4 \mathrm{t}+80 \mathrm{t})$
$\therefore \mathrm{a}=-4 \mathrm{ft} / \mathrm{s}$.

Question 3

$$
\begin{aligned}
& \mathrm{a}=\mathrm{V} \frac{d v}{d s} \\
& \mathrm{a}=\frac{d}{d s}(0.25)(0.25) \\
& \mathrm{a}=0.0625 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Question 4

Question 5

From 0-5 sec;
$V=3 t^{2}$
$\mathrm{V}=\frac{d s}{d t}$
$\therefore \mathrm{V}=\frac{d}{d t}\left(3 t^{2}\right)$
$V=6 t \mathrm{~m} / \mathrm{s} @ t=5 \rightarrow V=6(5)=30 \mathrm{~m} / \mathrm{s}$
From 5-10 sec
$\mathrm{V}=\frac{d}{d t}(30 t-75)$
$\therefore \mathrm{V}=30 \mathrm{~m} / \mathrm{s}$
$a=d v / d t$
$\mathrm{dv}=\mathrm{adt} \quad|\mathrm{v}|_{100}^{v}=|-10|_{5}^{t}$
when $t=5, a=20$
$V=a(5)$
$\int_{0}^{v} d v=\int_{0}^{t=5} 20 d t$
$|v|_{0}^{v}=|20 t|_{0}^{5}$
$V=20(5)$
$V=100 \mathrm{~m} / \mathrm{s}$
When $t=t^{\prime}, a=-10$
$\cdot \int_{100}^{v} d v=\int_{5}^{\tilde{t}}-10 d t$
$V-100=-10 t^{\prime}=10(5)$
$V-100=-10 t^{\prime}=50$
$V=150-10 t^{\prime}$
$\mathrm{V}=0$ when the car is at rest
$0=150-10 t^{\prime}$
$10 t^{\prime}=150$
$\mathrm{t}^{\prime}=\frac{150}{10}$
$\mathrm{t}^{\prime}=15 \mathrm{sec}$

$$
\begin{array}{ll}
\text { Question } 6 & \begin{array}{l}
\mathrm{V}=\mathrm{ds} / \mathrm{dt} \\
\mathrm{ds}=\mathrm{vdt}
\end{array} \\
\text { From } 0-5 \mathrm{sec} \\
\int_{0}^{s} d s=\int_{0}^{5} 30 t \mathrm{~m} 7 \mathrm{p}
\end{array}
$$

