
ADESINA ALAMEEN B
18/SCI01/099
CSC 310



A translator or programming language processor is a 
generic term that can refer to anything that converts code from 
one computer language into another. These include translations 
between high-level and human-readable computer languages 
such as C++ and Java, intermediate-level languages such as Java 
bytecode, low-level languages such as the assembly language 
and machine code, and between similar levels of language on 
different computing platforms, as well as from any of the above 
to another.

There are 3 different types of translators as follows:
i)Compiler

A compiler is a translator used to convert high-level 
programming language to low-level programming language. It 
converts the whole program in one session and reports errors 
detected after the conversion. The compiler takes time to do its 
work as it translates high-level code to lower-level code all at 
once and then saves it to memory. A compiler is processor-
dependent and platform-dependent. It has been addressed by 
alternate names as the following: special compiler, cross-
compiler and, source-to-source compiler.

ii)Interpreter
The interpreter is similar to a compiler, it is a translator 

used to convert high-level programming language to low-level 
programming language. The difference is that it converts the 
program one line of code at a time and reports errors when 
detected, while also doing the conversion. An interpreter is 
faster than a compiler as it immediately executes the code upon 



reading the code. It is often used as a debugging tool for 
software development as it can execute a single line of code at a 
time. An interpreter is also more portable than a compiler as it is 
processor-independent, you can work between different 
hardware architectures.

iii)Assembler
An assembler is a translator used to translate assembly 

language into machine language. It has the same function as a 
compiler for the assembly language but works like an 
interpreter. Assembly language is difficult to understand as it is 
a low-level programming language. An assembler translates a 
low-level language, such as an assembly language to an even 
lower-level language, such as the machine code.

Comparative analysis of Assembler, Compiler and Interpreter 
Assembler Compiler Interpreter

Assembler converts 
source code written 
in assembly 
language into 
machine code and 
then that machine 
code is executed by 
a computer.

A compiler 
converts high-level 
language program 
code into machine 
language and then 
executes it. High-
level languages are 
C and C#

Interpreter converts 
source code into the 
intermediate form 
and then converts 
that intermediate 
code into machine 
language. The 
intermediate code 
looks same as 
assembler code.



Assembler converts 
assembly language 
to machine 
language at once.

Complier scans the 
entire program first 
before translating 
into machine code.

Interpreter scans 
and translates the 
program line by 
line to equivalent 
machine code.

It converts a source 
code to an object 
first then it converts 
the object code to 
machine language 
with the linker 
programs.

Compiler takes 
entire program as 
input.

Interpreter takes 
single instruction as 
input.

Input to the 
assembler is 
assembly language 
code.

Intermediate object 
code is generated in 
case of compiler.

In case of 
interpreter, No 
intermediate object 
code is generated.

Assembler takes the 
most amount of 
execution time of 
the three

Compiler takes less 
execution time 
when compared to 
interpreter.

Interpreter takes 
more execution 
time when 
compared to 
compiler.

GAS, GNU is an 
example of an 
assembler.

Examples include 
C, COBOL, C#, C+
+, etc

Examples include 
Python, Perl, VB, 
PostScript, LISP 
etc



IMPORTANCE OF HIGH LEVEL LANGUAGE
The main advantage of high-level languages over low-level 

languages is that they are easier to read, write, and maintain. 
Ultimately, programs written in a high-level language must be 
translated into machine language by a compiler or interpreter.
The first high-level programming languages were designed in 
the 1950s. Now there are dozens of different languages, 
including Ada, Algol, BASIC, COBOL, C, C++, FORTRAN, 
LISP, Pascal, and Prolog.


