SURNAME: OKAM

OTHER NAMES: EMMANUEL CHIJIOKE
MATRIC NO.:19/MHS01/309

COLLEGE: Medicine and Health Sciences

DEPARTMENT: Medicine and Surgery LEVEL: 100

Assignment Title: Calculus For MBBS Students ONLY
Course Title: General Mathematics III
Course Code: MAT 104
Question
Examine whether or not these pair of lines are perpendicular to each other. (1) $y-3 x-2=0$ and $3 y+x+9=0$ (2) $3 y-4=2 x+3$ and $y-5=x+6$ (3) Find the equations of the tangent and normal to the curve xsquare + ysquare $+3 x y-11=0$ at the point $x=1, y=2$.
(1)

$$
\begin{gathered}
y-3 x-2=0 \quad \text { ie }-3 x+y-2 \\
3 y+x+a=0 \quad \text { ie } x+3-y+9=0 \\
a_{1} a_{2}+b_{1}+b_{2}=-3(1)+1(3)=-3+3=0 \\
a_{1} a_{2}+b_{1} b_{2}=0 \\
\therefore(1) \leq(2)
\end{gathered}
$$

If pout of slopes is -1 then lines are pepéndialar.

$$
m_{1}, m_{2}=-1 ; \quad 4=m++c
$$

$$
\begin{aligned}
&-1-3 x-2=0 \Rightarrow 4=3 x+2 \Rightarrow m_{1}=2 \\
& 3-1+x+9=0 \Rightarrow 4=\frac{-1}{3}+-3 \Rightarrow m_{2}=-1 / 3 \\
& m_{1}, m_{2}=(3)\left(\frac{-1}{3}\right)=-1
\end{aligned}
$$

\therefore The lines are perpenchicar
(2)

$$
\begin{aligned}
& 3+-4=2 x+3 \Rightarrow 1=\frac{2}{3} x+7 / 3 \Rightarrow m_{1}=\frac{2}{3} \\
& y-5=x+6 \Rightarrow y=x+11 \Rightarrow m_{2}=1 \\
& m_{1}, m_{2}=\left(\frac{2}{3}\right)(1)=\frac{2}{3}-1
\end{aligned}
$$

\therefore The haus are not perpendicuor
(3) $x^{2}+y^{2}+3 x y-11=0 ;\left(x_{0} t_{0}=(1,2)\right.$
differenhate imphath w.rt x

$$
\begin{gathered}
2 x+2 y 7^{\prime}+3 \cdot 1 \cdot y+3 f \cdot y^{\prime}-0=0 \\
(24+3 x) y^{\prime}=-2 x-3 y \\
y^{\prime}=\frac{-2 x-3 y}{27+3 t}
\end{gathered}
$$

Slopif tanged line $m_{1}=7^{\prime}(1,2)=\frac{-2-6}{4+3}=\frac{-8}{7}$
Tonget hine $4-70=m_{1}(x-x 0)$

$$
\begin{aligned}
& y-2=\frac{-8}{7}(x+ \\
& y=\frac{8}{7} 7+\frac{22}{7}
\end{aligned}
$$

Norrnat line and tanged hue are parpponchall $\therefore m_{1}: m_{2}=-1$

$$
\begin{aligned}
& \frac{-8}{7}-m_{2}=-1 \\
& m_{2}=\frac{7}{8} \\
& \text { Normal } \quad 7-y_{0}=m_{2}\left(x-x_{0}\right) \\
& y-2=\frac{7}{8}(x-1) \\
& 7=\frac{7}{8} x+\frac{7}{8}
\end{aligned}
$$

