
NAME AMAO MUHAMMED OLAMIDE
MATRIC NUMBER 17/SCI01/O15

Loop and Switch
There are two primary methods for implementing a scanner. The first is a program that is hard-coded to perform the scanning tasks. The second uses regular expression and finite automata theory to model the scanning process.
A "loop & switch" implementation consists of a main loop that reads characters one by one from the input file and uses a switch statement to process the character(s) just read. The output is a list of tokens and lexemes from the source program. The following program fragment shows a skeletal implementation of a simple loop and switch scanner. The main program calls InitScanner and loops calling ScanOneToken until EOF. ScanOneToken reads the next character from the file and switches off that char to decide how to handle what is coming up next in the file. The return values from the scanner can be passed on to the parser in the next phase.
The mythical source language tokenized by the above scanner requires that reserved 
words be in all upper case and identifiers in all lower case. This convenient feature 
makes it easy for the scanner to choose which path to pursue after reading just one 
character. It is sometimes necessary to design the scanner to "look ahead" before 
deciding what path to follow— notice the handling for the '/' character which peeks at 
the next character to check whether the first slash is followed by another slash or star 
which indicates the beginning of a comment. If not, the extra character is pushed back 
onto the input stream and the token is interpreted as the single char operator for 
division.
Loop-and-switch scanners are sometimes called ad hoc scanners, indicating their design 
and purpose of solving a specific instance rather a general problem. For a sufficiently 
reasonable set of token types, a hand coded, loop and switch scanner might be all that’s 
needed— it requires no other tools. The gcc front-end uses an ad hoc scanner, in fact. 
On the other hand, gcc’s C lexer is over 2,500 lines of code; verifying that such an 
amount of code is correct is much harder if your lexer does not see the extent of use that 
gcc’s front-end experiences.
