DADA TITILOLAMI JADESOLA

19/ENG01/017

CHEMICAL ENGINEERING

ENG 214 ASSIGNMENT

1. A conical tube of length 2.0 m is fixed vertically with its smaller end upwards. The velocity of flow at the smaller end is $5 \mathrm{~m} / \mathrm{s}$ while at the lower end it is $2 \mathrm{~m} / \mathrm{s}$. The pressure head at the smaller end is $\mathbf{2 . 5 m}$ of liquid. The loss of head in the tube is given as $\left(0.35(v 1-v 2)^{2}\right) / 2 \mathrm{~g}$. where v 1 is the velocity at the smaller end and v 2 at the lower end respectively. Determine the pressure head at the lower end. Flow takes place in the downward direction.

SOLUTION

$\mathrm{L}=2.0 \mathrm{~m}$
$\mathrm{V}_{1}=5 \mathrm{~m} / \mathrm{s}$
$\frac{P_{1}}{\rho g}=2.5 \mathrm{~m}$ of liquid
$\mathrm{V}_{2}=2 \mathrm{~m} / \mathrm{s}$
$\mathrm{H}_{\mathrm{L}}=\frac{0.35\left(v_{1}-V_{2}\right)^{2}}{2 g}$
$=\frac{0.35(5-2)^{2}}{2 \times 9.8}$
$H_{L}=0.16 m$
$\frac{P_{2}}{\rho g}=?$

$$
\frac{P_{1}}{\rho g}+\frac{V_{1}^{2}}{2 g}+Z_{1}=\frac{P_{2}}{\rho g}+\frac{V_{2}^{2}}{2 g}+Z_{2}
$$

$\mathrm{Z}_{2}=0, \mathrm{Z}_{1}=2$

$$
2.5+\frac{5^{2}}{2 \times 9.8}+2=\frac{P_{2}}{\rho g}+\frac{2^{2}}{2 \times 9.8}+0+0.16
$$

$\frac{P_{2}}{\rho g}=5.77-0.363$
$\frac{P_{2}}{\rho g}=5.407 \mathrm{~m}$ of fluid.
2. A horizontal venturimeter with inlet diameter 20 cm and throat diameter 10 cm is used to measure the flow of water. The pressure at inlet is $17.658 \mathrm{~N} / \mathrm{cm}^{2}$ and the vacuum pressure at the throat is 30 cm of mercury. Find the discharge of water through venturimeter. Take $C_{d}=\mathbf{0 . 9 8}$.

SOLUTION

$\mathrm{d}_{1}=20 \mathrm{~cm}$
$\mathrm{a}_{1}=314.16 \mathrm{~cm}^{2}$
$\mathrm{d}_{2}=10 \mathrm{~cm}$
$\mathrm{a}_{2}=78.74 \mathrm{~cm}^{2}$
$\mathrm{P}_{1}=17.658 \mathrm{~N} / \mathrm{cm}^{2}=17.658 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}$
$\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
$\frac{P_{1}}{\rho g}=\frac{17.658 \times 10^{4}}{9.81 \times 1000}=18 \mathrm{~m}$ of water
$\frac{P_{1}}{\rho g}=30 \mathrm{~m}$ of mercury
$=-0.30 \mathrm{~m}$ of mercury $=-0.30 \times 13.6=-4.08 \mathrm{~m}$ of water
Differential head $=\mathrm{h}=\frac{P_{1}}{\rho g}-\frac{P_{2}}{\rho g}=18-(-4.08)$

$$
=18+4.08=22.08 \mathrm{~m} \text { of water }=2208 \mathrm{~cm} \text { of water }
$$

$\mathrm{Q}=\mathrm{C}_{\mathrm{d}} \frac{a_{1} a_{2}}{\sqrt{a_{1}^{2}-a_{2}^{2}}} \times \sqrt{2 g h}$

$$
=0.98 \times \frac{314.16 \times 78.74}{\sqrt{(314.16)^{2}-(78.74)^{2}}} \times \sqrt{2 \times 9.81 \times 2208}
$$

$$
=165.555 \mathrm{lit} / \mathrm{s}
$$

3. An orifice meter with orifice diameter 15 cm is inserted in a pipe of 30 cm diameter. The pressure difference measured by a mercury oil differential manometer on the two sides of the orifice meter gives a reading of 50 cm of mercury. Find the rate of flow of oil of specific gravity of 0.9 , when the co-efficient of discharge of the meter is 0.64 .

SOLUTION

4. A sub-marine moves horizontally in sea and has its axis 15 m below the surface of water. A pitot-tube properly placed just in front of the sub-marine and along its axis is connected to the two limbs of a U-tube containing mercury. The difference of mercury level is found to be 170 mm . Find the speed of the sub-marine knowing the Sp.gr. of mercury is $\mathbf{1 3 . 6}$ and that of sea-water is $\mathbf{1 . 0 2 6}$ with respect to fresh water.

SOLUTION

$$
\begin{gathered}
\mathrm{V}=c \sqrt{2} g r\left(\frac{\text { spgr }_{m}}{s}-1\right) \\
\mathrm{X}=\frac{170}{1000}=0.17 \mathrm{~m} \\
\operatorname{spgr}_{m}=13.6 \\
\mathrm{Spgr}_{\mathrm{s}}=1.026 \\
\mathrm{C}=1 \\
\mathrm{~V}=1 * \sqrt{2} \times 9.81 \times 6.17 \times\left(\frac{13.6}{1.026}-1\right)
\end{gathered}
$$

$$
\mathrm{V}=6.4 \mathrm{~m} / \mathrm{s}
$$

5. A pump delivers at the rate of $0.05 \mathrm{~m}^{3} / \mathrm{min}$ with a pressure change of 15 bar . The speed of roration is $1700 \mathrm{rev} / \mathrm{min}$ while the normal displacement is given as $10 \mathrm{~cm}^{3} / \mathrm{rev}$. If the torgue input is 15 Nm . Compute (i) Volumetric Efficiency, (ii) Fluid Power, (iii) Shaft Power, and (iv) Overall Efficiency.

SOLUTION

Idea flow rate $=$ Nominal Displacement \times Speed $=10 \times 1700=17000 \mathrm{~cm}^{3} / \mathrm{min}=0.017 \mathrm{~m}^{3} /$ min.

Volumetric efficiency $=$ Actual Flow/Ideal Flow $=0.05 / 0.017=2.941$ or 294.1%.
$\mathrm{Q}=0.05 / 60 \mathrm{~m}^{3} / \mathrm{s}=8.33 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{s}$
$\Delta \mathrm{p}=15 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$
Fluid Power $=\mathrm{Q} \Delta \mathrm{p}=8.33 \times 10^{-4} \times 15 \times 10^{5}=1249.5$ Watts

Shaft Power $=2 \pi$ NT $/ 60=2 \pi \times 1700 \times 15 / 60=2670.35 \mathrm{Nm}$
Overall Efficiency $=$ F.P. $/$ S.P. $=1249.5 / 2670.35=0.4679$ or 46.79%

