NAME: SUNDAY WINNER CHIGOZIRIM COURSE: ENG 214 (FLUID MECHANICS) MATRIC: 18/ENG05/057 DEPT: MECHATRONICS ENGINEERING

Supphy winning attractive prime
IS (2000 the construction)
(1) (angle = 2.0m

$$v_1 = 5m/s$$
, $v_2 = 2m/s$
 $r_1 = 2.5m$ of light
loss of hend, $h_1 = 0.35(v_1 - v_2)^2 = 0.25(5-2)^2 = 0.161m$
 $r_2 = 2.5m$ of light
loss of hend, $h_1 = 0.35(v_1 - v_2)^2 = 0.25(5-2)^2 = 0.161m$
 $r_2 = 2.5m$ of light
 $r_3 = 2.5m$ of light
 $r_4 = 5.4m$ of light
 $r_5 = 5.4m$ of light
 $r_4 = 5.4m$ of light
 $r_5 = 176.558$ N/cm² = 176.5580 k/ra
 $r_7 = -0.3m$ s 13.6 - -4.08m
 $r_7 = -0.3m$ 13.6 - -4.08m
 $r_7 = -0.38$ 13.6 - --4.08m
 $r_7 = -0.38m$ 13.6 - --4.08m
 $r_7 = -0.38m$ 13.6 - --4.08m
 $r_7 = -0.38m$ 13.6 - --4.

$$\begin{array}{c} \therefore q = c.t \times A_{1} \times A_{2} \times 2gh \\ Jh_{1}^{*} = h_{2}^{*} \\ Q = 0.98 \times 0.0314 \times 0.007 \ q \times J2 \times 9.81 \times 22.08 \\ J(0.0314)^{*} = (0.0879)^{*} \\ Q = 0.166 \ m^{3}/s \\ Q = 0.166 \ m^{3}/s \\ \end{array}$$

$$\begin{array}{c} Q = 0.166 \ m^{3}/s \\ A^{ch} = 0.076 \ m^{ch} = 1 \times 0.15^{*} = 0.0176 \ m^{2} = A_{2} \\ A^{ch} = 0.0176 \ m^{ch} = 1 \times 0.15^{*} = 0.0176 \ m^{2} = A_{2} \\ Pac \ diamstr = 20 \ m^{ch} = 0.071 \ m^{ch} = A_{1} \\ Pac \ diamstr = 20 \ m^{ch} = 0.071 \ m^{ch} = A_{1} \\ Pac \ diamstr = 30 \ m^{ch} = 0.071 \ m^{ch} = A_{1} \\ Pac \ diamstr = 30 \ m^{ch} = 0.071 \ m^{ch} = A_{1} \\ Pac \ diamstr = 30 \ m^{ch} = 0.071 \ m^{ch} = A_{1} \\ Pac \ diamstr = 30 \ m^{ch} = 0.071 \ m^{ch} = A_{1} \\ Pac \ diamstr = 30 \ m^{ch} = 0.071 \ m^{ch} = A_{1} \\ Pac \ diamstr = 30 \ m^{ch} = 0.071 \ m^{ch} = A_{1} \\ Pac \ diamstr = 30 \ m^{ch} = 0.071 \ m^{ch} = A_{1} \\ Pac \ diamstr = 30 \ m^{ch} = 0.071 \ m^{ch} = A_{1} \\ Pac \ diamstr = 30 \ m^{ch} = 0.071 \ m^{ch} = A_{1} \\ Pac \ diamstr = 30 \ m^{ch} = 0.071 \ m^{ch} = A_{1} \\ Pac \ diamstr = 30 \ m^{ch} = 0.071 \ m^{ch} = A_{1} \\ Pac \ diamstr = 30 \ m^{ch} = 0.071 \ m^{ch} = A_{1} \\ Pac \ diamstr = 30 \ m^{ch} = 0.071 \ m^{ch} = A_{1} \\ Pac \ diamstr = 30 \ m^{ch} = 0.071 \ m^{ch} = A_{1} \\ Pac \ diamstr = 30 \ m^{ch} = 0.071 \ m^{ch} = A_{1} \\ Pac \ diamstr = 30 \ m^{ch} = 0.071 \ m^{ch} = A_{1} \\ Q = 0.64 \ \times 0.0176 \ \times 0.071^{*} = 0.0176^{*} \\ Q = 0.137 \ m^{3} (s) \end{array}$$

() and
$$s = 15m$$
 below surface
y = 17mm = 0.17m g precing
sp. gravity g + tg = 18.6
sp gravity g water = 1.024
 $h = y(5t - 1) = 0.17(13.6 - 1)$
 $h = 3.08m$
speed g Sub-marke = $523h$
 $= 52x q.81 x 2.08$
 $= 6.38m/8$
(s) Rate of primp delivery = 0.05m²/mm = 8.33 × 10⁻⁴ m³/s
possine clange = 15 bar = 15 × 105 m/m²
speed g rotethin = 1700 new/mm = 28.33 rev/sec
normal displacement = 10cm²/rev = 11×10⁻⁵ m³/rev
Torque mpit = 15m
(s) volumetric efficiency = Actual flow rate × 105
 $1deal$ flow rate = normal displacement × speed
 $= 1.810^{-5} \times 28.33$
 $= 2.833 \times 10^{-4} \times 100$
 $2.833 \times 10^{-4} \times 100$
 $2.833 \times 10^{-4} \times 100$

(ii) Fluid power - Actual flow rate × pressure = 8-33 × 10-4 × 15 × 105 = 1249.5 W= 1.2495 KW (iii) shaft power = Tarque input X angular speet Tarque input = 15 Nm Angular speed = W= 21TN = 2×22×28.33 60 7 = 178.07 WBrachis 2 #18 (i) Overall efficiency = Fluid power × 100 shaft power = 1249.5 × 100 178.07 = 702°/0 // 1. Jakan Fr 212 day with the prover the state have the part leave and the stand at at as a said in a 1 alter al des a man sitter site 1 2 1 2 3 2 " the is a set of the set