
Aimuel Emmanuel
16/SCI01/005
CSC 410
 
The three main performance 
evaluation techniques are:
1. Performance measurement
2. Analytic performance 
modelling
3. Simulation performance 
modelling
Using the following performance 
measurement technique, we can 
achieve an accurate performance 
report:
• On-chip Performance 
Monitoring Counters: All state-of-
the-art high performance 
microprocessors including Intel's 
Pentium III and Pentium IV, IBM's 
POWER 3 and POWER 4 
processors, AMD's Athlon, 
Compaq's Alpha, and Sun's 
UltraSPARC processors 
incorporate on-chip performance 
monitoring counters which can be 
used to understand performance 
of these microprocessors while 



they run complex, real-world 
workloads. This ability has 
overcome a serious limitation of 
simulators, that they often could 
not execute complex workloads. 
Now, complex run time systems 
involving multiple software 
applications can be evaluated and 
monitored very closely. All 
microprocessor vendors 
nowadays release information on 
their performance monitoring 
counters, although they are not 
part of the architecture. For 
illustration of on-chip 
performance monitoring, we use 
the Intel Pentium processors. The 
microprocessors in the Intel 
Pentium contain two performance 
monitoring counters. These 
counters can be read with special 
instructions (eg: RDPMC) on the 
processor. The counters can be 
made to measure user and kernel 
activity in combination or in 
isolation. A variety of 
performance events can be 
measured using the counters



• Off-chip hardware 
measurement: Instrumentation 
using hardware means can also 
be done by attaching off-chip 
hardware, two examples of which 
are described in this section.

 
Speed-Tracer from AMD: AMD 
developed this hardware tracing 
platform to aid in the design of 
their x86 microprocessors. When 
an application is being traced, the 
tracer interrupts the processor on 
each instruction boundary. The 
state of the CPU is captured on 
each interrupt and then 
transferred to a separate control 
machine where the trace is 
stored. The trace contains 
virtually all valuable pieces of 
information for each instruction 
that executes on the processor. 
Operating system activity can 
also be traced. However, tracing 
in this manner can be invasive, 
and may slow down the 
processor. Although the 
processor is running slower, 



external events such as disk and 
memory accesses still happen in 
real time, thus looking very fast to 
the slowed-down processor. 
Usually this issue is addressed by 
adjusting the timer interrupt 
frequency. Use of this 
performance monitoring facility 
can be seen in Merten and 
Bhargava.

 
Logic Analyzers: Poursepanj and 
Christie use a Tektronix TLA 700 
logic analyzer to analyze 3D 
graphics workloads on AMD-K6-2 
based systems. Detailed logic 
analyzer traces are limited by 
restrictions on sizes and are 
typically used for the most 
important sections of the 
program under analysis. 
Preliminary coarse level analysis 
can be done by performance 
monitoring counters and software 
instrumentation. Poursepanj and 
Christie used logic analyzer 
traces for a few tens of frames 
which covered a second or two of 



smooth motion.
 
• Software Monitoring: Software 
monitoring is often performed by 
utilizing architectural features 
such as a trap instruction or a 
breakpoint instruction on an 
actual system, or on a prototype. 
The VAX processor from Digital 
(now Compaq) had a T-bit that 
caused an exception after every 
instruction. Software monitoring 
used to be an important mode of 
performance evaluation before 
the advent of on-chip 
performance monitoring counters. 
The primary advantage of 
software monitoring is that it is 
easy to do. However, 
disadvantages include that the 
instrumentation can slow down 
the application. The overhead of 
servicing the exception, switching 
to a data collection process, and 
performing the necessary tracing 
can slow down a program by 
more than 1000 times. Another 
disadvantage is that software 



monitoring systems typically only 
handle the user activity.
• Microcoded Instrumentation: 
Digital (now Compaq) used 
microcoded instrumentation to 
obtain traces of VAX and Alpha 
architectures. The ATUM tool [14] 
used extensively by Digital in the 
late 1980s and early 1990s uses 
microcoded instrumentation. This 
is a technique lying between 
trapping information on each 
instruction using hardware 
interrupts (traps) or software 
traps. The tracing system 
essentially modified the VAX 
microcode to record all 
instruction and data references in 
a reserved portion of memory. 
Unlike software monitoring, ATUM 
could trace all processes 
including the operating system. 
However, this kind of tracing is 
invasive, and can slow down the 
system by a factor of 10 without 
including the time to write the 
trace to the disk.
Using the Analytical performance 



modelling, we can achieve an 
accurate performance report: 
Performance measurement as 
described in the previous section 
can be done only if the actual 
system or a prototype exists. It is 
expensive to build prototypes for 
early stage evaluation. Hence one 
needs to resort to some kind of 
modeling in order to study 
systems yet to be built. 
Performance modeling can be 
done using simulation models or 
analytical models.
 
Using the following Simulation 
performance modelling 
techniques, we can achieve an 
accurate performance report:
• Trace-driven simulation: 
consists of a simulator model 
whose input is modeled as a trace 
or sequence of information 
representing the instruction 
sequence that would have 
actually executed on the target 
machine. A simple trace driven 
cache simulator needs a trace 



consisting of address values. 
Depending on whether the 
simulator is modeling a unified 
instruction or data cache, the 
address trace should contain 
addresses of instruction and data 
references. Cachesim5 and 
Dinero IV are examples of cache 
simulators for memory reference 
traces. These simulators are not 
timing simulators. There is no 
notion of simulated time or 
cycles, only references. They are 
not functional simulators. Data 
and instructions do not move in 
and out of the caches. The 
primary result of simulation is hit 
and miss information. The basic 
idea is to simulate a memory 
hierarchy consisting of various 
caches. The various parameters 
of each cache can be set 
separately (architecture, mapping 
policies, replacement policies, 
write policy, statistics). During 
initialization, the configuration to 
be simulated is built up, one 
cache at a time, starting with 



each memory as a special case. 
After initialization, each reference 
is fed to the appropriate top-level 
cache by a single simple function 
call. Lower levels of the hierarchy 
are handled automatically. One 
does not need to store a trace 
while using cachesim5, because 
Shade can directly feed the trace 
into cachesim5
• Execution Driven Simulation: 
There are two meanings in which 
this term is used by researchers 
and practitioners. Some refer to 
simulators that take program 
executables as input as execution 
driven simulators. These 
simulators utilize the actual input 
executable and not a trace. Hence 
the size of the input is 
proportional to the static 
instruction count and not the 
dynamic instruction count. Mis-
predicted branches can be 
accurately simulated as well. 
Thus, these simulators solve the 
two major problems faced by 
trace-driven simulators. The 



widely used Simple-scalar 
simulator is an example of such 
an execution driven simulator. 
With this tool set, the user can 
simulate real programs on a range 
of modern processors and 
systems, using fast execution-
driven simulation. There is a fast-
functional simulator and a 
detailed, out-of-order issue 
processor that supports non-
blocking caches, speculative 
execution, and state-of-the-art 
branch prediction.
• Complete system simulation: 
Many execution and trace driven 
simulators only simulate the 
processor and memory 
subsystem. Neither I/O activity 
nor operating system activity is 
handled in simulators like 
Simplescalar. But in many 9 
workloads, it is extremely 
important to consider I/O and 
operating system activity. 
Complete system simulators are 
complete simulation environments 
that model hardware components 



with enough detail to boot and 
run a full-blown commercial 
operating system. The 
functionality of the processors, 
memory subsystem, disks, buses, 
SCSI/IDE/FC controllers, network 
controllers, graphics controllers, 
CD-ROM, serial devices, timers, 
etc are modeled accurately in 
order to achieve this. While 
functionality stays the same, 
different microarchitectures in the 
processing component can lead 
to different performance. Most of 
the complete system simulators 
use microarchitectural models 
that can be plugged in and out. 
For instance, SimOS, a popular 
complete system simulator 
provides a simple pipelined 
processor model and an 
aggressive superscalar processor 
model. SimOS and SIMICS can 
simulate uniprocessor and 
multiprocessor systems.
• Stochastic Discrete Event 
Driven Simulation: It is possible to 
simulate systems in such a way 



that the input is derived 
stochastically rather than as a 
trace/executable from an actual 
execution. For instance, one can 
construct a memory system 
simulator in which the inputs are 
assumed to arrive according to a 
Gaussian distribution. Such 
models can be written in general 
purpose languages such as C, or 
using special simulation 
languages such as SIMSCRIPT. 
Languages such as SIMSCRIPT 
have several built-in primitives to 
allow quick simulation of most 
kinds of common systems. There 
are built-in input profiles, 
resource templates, process 
templates, queue structures, etc. 
to facilitate easy simulation of 
common systems. An example of 
the use of event-driven simulators 
using SIMSCRIPT may be seen in 
the performance evaluation of 
multiple-bus multiprocessor 
systems in Kurian et. Al
• Program Profilers: There are a 
class of tools called software 



profiling tools, which are similar to 
simulators and performance 
measurement tools. These tools 
are used to generate traces, to 
obtain instruction mix, and a 
variety of instruction statistics. 
They can be thought of as 
software monitoring on a 
simulator. They input an 
executable and decode and 
analyze each instruction in the 
executable. These program 
profilers can be used as the front 
end of simulators. A popular 
program profiling tool is Shade for 
the UltraSparc.
 
 
 
 


