

ADESINA ALAMEEN .B

18/SCI01/099

CSC 302

SURVEY OF
PROGRAMMING

LANGUAFE

SCHEMA TO DISTINGUISH BETWEEN
MODULAR AND OBJECTED ORIENTED

PROGRAMMING PARADIGM
S/n Modular

Programming
Paradigm

Object Oriented
Programming

Paradigm (OOP)
1 Definition Modular Programming (aka 'stepwise

refinement' and 'top-down design'
paradigm) is a software designing
technique that emphasizes separating
the functionalities of a program into
independent and
meaningful modules, such that each
module contains everything
necessary for executing the one (and
only one) aspect of the desired
functionality!

An object oriented program contains
different types of objects, each
corresponding to a complex real
world objects or any complex data
or a concept such as a bank
customer, a bank account or any
departmental store.

2 How it
works

Modular programming was devised
in a predominately procedural world.
Modules drew a box around a set of
procedures and required that box to
be independently deploy-able. It was
an organization scheme for keeping
procedures neat and tidy. Different
languages might offer different
mechanisms for implementing that

Objects form a box around a set of
procedures, which qualifies them as
modules. But they do much more
than that, and some languages use
the term module to refer to even
higher levels of code organization.

mechanisms for implementing that
scheme.

3 How it
solves

problems

In the modular programming
approach, the verbs in the problem
description are the ones considered
first. Typically, these verbs represent
the work to be done and therefore the
likely subroutines that we would
have to implement in order to solve
the problem. The names in the
description represent the information
(variables and datatypes) that will
will be acting on or producing at the
end. Modular programming is based
on three things, which are:
1. The information needed before the
process can start,
2. The work to be done with that
information and
3. The expected output of a
procedure.

In Object Oriented Programming,
the names, not the verbs, are the first
to be considered because in O.O.P.
the first task is to define entities, not
actions. O.O.P. starts by defining the
players (or actors if you will) of a
given scene (the problem) and them
proceeds to defining how the actors
are described (the properties) and
what the actors can do (the
methods). Once all these are defined
for all playing actors, then the scene
(the main part of the program
controls what each players has and
what it does. Only when you are
defining the methods of the object
can you actually start answering the
same three questions that the
modular approach lets you define
right from the start.

Translating an airline reservation program from a
modular to an object oriented design

S/N Modular
Programming

Paradigm

Objected Oriented
Programming Paradigm

1 The functionalities of the airline
reservation program will be
separated into independent and
meaningful modules such that each
module contains everything
necessary for executing the one (and
only one) aspect of the desired
functionality. For example the
functionality that allows for the
picking of random seats is able to
function exclusively

The program allows for the reservation program to
mirror real life airline reservation structure. Eg, each
plane seat to be reserved is an object

2 1) What information is needed
-The program need to know the
personal information of the
passenger(s) such as their age,
name, marital status, height
-The program needs to know the
information about the flight to be

THE ENTITIES
1) The customer entities
The customer is the main actor of the scene. Every other
entity in the model revolves around what the customer is
and what it can do. This is the key player because it is at
the center of any object relationships that can exist. Here
are the defining attributes (properties) and Related

booked such as: where the
passenger(s) are leaving from,
where the passenger(s) are going to,
how much the passenger is willing
to spend on a seat, if the passenger
is buying a return ticket etc

2) What is to be done with the
information
-The program will use the personal
information part to create and keep
a customer profile, from this profile
using some algorithms other
travel/reservation suggestions may
be made to the customer.
-The program will use the flight
information to know which flight to
be picked for a customer and when
it should be picked for the customer

3) What is expected(Outputs)
The output of this program may
include:
- The flight ticket(s)
-The general flight details etc

Functionality (The Methods) of the Employee Entity.
-Defining Attributes:
The customer entity will need an customerID, his name,
address, city, state, zip code, telephone number, email
and hourly rate attributes.
-Related Functionality:
The customer needs to be able to do several things as far
as it's defining attributes go as well as the ability to call
the functionality of the other entities for timekeeping and
and calculations. As such, the methods needed will be.
EntercustomerID, Savecustomer, Loadcustomer,
Findcustomer and Printcustomer.
2) The flight entities
The flight Entity should be made to work a week based
format where all the days are there so that it can be easy
to get a quick overview of what the week is like
currently. We will add a method to our object to make
sure that the airlines flight data is completely entered
before we go ahead and print the flight times just as a
precaution because of the importance of the data that is
being handled.
-Defining Attributes:
When you think of flight data, it doesn't take too long to
determine the general information that you would need.
The properties are: planeID, DayOfWeek, DayDate,
landingTime, maintenanceTime, refuelingTime,
timeOfNextFlight. customerID is needed to connect a
flight record to an customer record in the master
employee data file. The rest of the properties specifically
relate to the flight Entity itself.
-Related Functionality:
As mentioned in the problem description, the flight
entity will need to perform several types of actions. The
names of the methods described here should help state
clearly what the methods which helps make the object
definition that much clearer. Au such, here are these
methods: GetFlightData, SaveFlightData,
LoadFlightData, PrintFlightData, WeeklDataCompleted,
PrintWeeklyFlightData, CalculateRegularHours,
CalculateOverTimeHours, CalculateHolidayHours,
CalculateRegularAmount, CalculateHolidayAmount
3) The report system entities
The reporting system is present because on an entity
based problem solving approach, every method needs to
find it's place withing an object model. In most cases,
printing related functionality is very often isolated into a
separate entity and sometimes even an independent
application (so that it can be executed on a separate
system on the network and print the report while users
can continue to do their other activities uninterrupted by
the printing process).
-Defining Attributes:
Since the report system entity creates no data files, all it
needs is three attributes to perform it's task. These
attributes are the customerID, a StartDate and an
EndDate properties so that it can accumulate all the
flightRecords that fall between these two dates.

-Related Functionality:
Ultimately, we could have provided all printing
functionality in the report system entity, which means
that the printing of the customer Data could have also
been added as a related functionality.

3 As you can see, the modular
approach is closely related to the
functionality needed in the problem
description. You think in terms of
what needs to be done and usually

As you can see, the Object Oriented Approach to
problem solving is quite different from the Modular
Approach. With all this information you now have on the
two methods, you might be wondering if there are certain
projects, or certain parts of a big project that could

what needs to be done and usually
can pretty quickly devise a workable
complete solution to a problem by
consecutively answering these three
questions (some of these answer
may require that you breakdown the
system into smaller answers to a
subset of these three question
depending on how complex the
system gets. This breaking down
into smaller more specific
procedures and functions is how
Modular Programming offers to
manage the complexity of a
program.

projects, or certain parts of a big project that could
benefit from the Modular Approach and likewise for the
Object Oriented Approach. Is there situations where you
would be better off using one method over another. In
this next section, I will discuss this subject, based on my
own personal experiences with both methods.

