

$$
\begin{aligned}
& \text { ur.) } \begin{aligned}
& \int \cos x \sin ^{3} x d x \\
&= \sin x, d / d x=\cos x \\
& \text { Let } u
\end{aligned} \quad \begin{array}{r}
\text { sin } x, d u / d x=\cos x \\
\therefore d u=\cos x d x \\
\therefore
\end{array} \quad \int \sin ^{3} x \cos x d x=\int u^{3} d
\end{aligned}
$$

Using reverse power rule:

$$
\begin{aligned}
\int u^{3} d u & =\frac{u^{3+1}}{3 t 1}+c \\
\int u^{3} d u & =\frac{u^{4}}{4}+c
\end{aligned}
$$

Recall bot $u=\sin x$

$$
\begin{array}{r}
\int \sin ^{3} x \cos x d x=\frac{\sin ^{4} x}{4}+c \\
\int \sin x \sin ^{3} x d x \\
=\frac{\sin ^{4} x}{4}+c
\end{array}
$$

