ITELIMA FAITH IBIFUBARA HAPPINESS
18/SCI01/106
CSC 302

1.
Main Program
Module 1.1
Module 1
Module 2
Module 3
Module 1.2
Module 1.3
Module 3.1
Module 3.2

Fig. 1.1: A schema illustrating modular programming paradigm

CLASS

	OBJECTS

	Instance of the class

	CLASS VARIABLES

	Belong to the class

	INSTANCE

	Variables belong to the object

	METHODS

	Functions of a class

Fig. 1.2: A schema illustrating object oriented programming paradigm

Modular programming: The idea of modular programming is to sub-divide a program into smaller units that are independently testable and that can be integrated to accomplish the overall programming objective. Modular Programming (aka 'stepwise refinement' and 'top-down design' paradigm) is a software designing technique that emphasizes separating the functionalities of a program into independent and meaningful modules, such that each module contains everything necessary for executing the one (and only one) aspect of the desired functionality!
Object oriented programming: The objectoriented approach is allegedly more flexible, by separating a program into a network of subsystems, with each controlling their own data, algorithms, or devices across the entire program, but only accessible by first specifying named access to the subsystem object-class, not just by accidentally coding a similar global variable name. Rather than relying on a structured-programming hierarchy chart, object oriented programming needs a call-reference index to trace which subsystems or classes are accessed from other locations. An object oriented program contains different types of objects, each corresponding to a complex real world objects or any complex data or a concept such as a bank customer, a bank account or any departmental store.
Airline Reservation Program
Ticket reservation
Reservation
Information
Administrator
View
Cancellation
Airbus
Fare discount
Flight schedule
New
Choose Flight
Search
Traveller Details
Confirmation

2.

Fig. 2.1: Modular programming representation
	Ticket series

	[bookmark: _GoBack]ticketseries: stringFig. 2.2: Object Oriented programming representation

	bookdate: string

	

	Ticket unit

	id: int

	

	Passenger

	id: int

	Creditinfo: string

	

	Ticket route

	type:{one-way, round-trip}

	trip_source: string

	trip_destination:string

	

	Span

	origin: string

	destination: string

	

	Flight

	flight: string

	schedule: list<departure_time, arrival_time, stop>

	

	seat

	seat: string

	

	Plane

	type: string

	number:string

	seatCapacity:infoList

	classInfo:infoList

	

	Airport

	name: string

	city: string

	

	Route

	origin: string

	destination: string

	

	Airlink

	airline_link: string

	

	AirportRole

	roleType:{route_t, span_t}

	

	Span

	departure_time: date

	parkingLot: int

	

	Destination

	arrival_time: date

	nearby_hotel: string

	

	Intermediate

	arrival_time: date

	departure_time: date

	hotels:string

	

