ITELIMA FAITH IBIFUBARA HAPPINESS
18/SCI01/106
CSC 302

1. 
Main Program
Module 1.1
Module 1
Module 2
Module 3
Module 1.2
Module 1.3
Module 3.1
Module 3.2











Fig. 1.1: A schema illustrating modular programming paradigm
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Fig. 1.2: A schema illustrating object oriented programming paradigm

Modular programming: The idea of modular programming is to sub-divide a program into smaller units that are independently testable and that can be integrated to accomplish the overall programming objective. Modular Programming (aka 'stepwise refinement' and 'top-down design' paradigm) is a software designing technique that emphasizes separating the functionalities of a program into independent and meaningful modules, such that each module contains everything necessary for executing the one (and only one) aspect of the desired functionality!
Object oriented programming: The objectoriented approach is allegedly more flexible, by separating a program into a network of subsystems, with each controlling their own data, algorithms, or devices across the entire program, but only accessible by first specifying named access to the subsystem object-class, not just by accidentally coding a similar global variable name. Rather than relying on a structured-programming hierarchy chart, object oriented programming needs a call-reference index to trace which subsystems or classes are accessed from other locations. An object oriented program contains different types of objects, each corresponding to a complex real world objects or any complex data or a concept such as a bank customer, a bank account or any departmental store.
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Fig. 2.1: Modular programming representation
	Ticket series

	[bookmark: _GoBack]ticketseries: stringFig. 2.2: Object Oriented programming representation


	bookdate: string

	


	Ticket unit

	id: int

	


	Passenger

	id: int

	Creditinfo: string

	







	Ticket route

	type:{one-way, round-trip}

	trip_source: string

	trip_destination:string

	






	Span

	origin: string

	destination: string

	






	Flight

	flight: string

	schedule: list<departure_time, arrival_time, stop>

	



	seat

	seat: string

	





                               

	Plane

	type: string

	number:string

	seatCapacity:infoList

	classInfo:infoList

	


	Airport

	name: string

	city: string

	



	Route

	origin: string

	destination: string

	









	Airlink

	airline_link: string

	


	AirportRole

	roleType:{route_t, span_t}

	






	Span

	departure_time: date

	parkingLot: int

	


	Destination

	arrival_time: date

	nearby_hotel: string

	


	Intermediate

	arrival_time: date

	departure_time: date

	hotels:string

	




 



