
!.

NASIR FIRDAUS OPEYEMI
17/sci01/051
CSC 302

Firstly, Modular
programming and object
programming are two
safe approaches to the
logical organisation of a
program, permitting the
reusability and the
modifiability of software
components.
Programming with
objects in Objective
CAML allows parametric
polymorphism
(parameterized classes)
and inclusion/subtype
polymorphism (sending
of messages) thanks to
late binding and
subtyping, with
restrictions due to

!.

equality, facilitating
incremental
programming.

 Modular programming
allows one to restrict
parametric polymorphism
and use immediate binding,
which can be useful for
conserving efficiency of
execution.
 The main difference
between modular
programming and object
programming in Objective
CAML comes from the type
system.The modular
programming model permits
the easy extension of
functions on non-extensible
recursive data types. If one
wishes to add a case in a
variant type, it will be
necessary to modify a large
part of the sources.

 The object model of
programming defines a set
of recursive data types using
classes. One interprets a
class as a case of the data
type.
 Below is a scenario of a
modular programming
paradigm

 Below is also a schema of
OOP paradigm:

[. Below is a designed
schema for a modular
design which will further
be converted into the
object oriented
programming design.

Below is the converted
airlines schema from
modular to object oriented
design

Below is Ann OOP schema
approach for an airline

 In conclusion,
The above approach
involves the use of object-
oriented methods and
Semantic Analysis Patterns.
By solving this type of
problems using object-
oriented methods we reap
the general benefits of this
approach, i.e., reusability,
extensibility, and conceptual
abstraction. It is recognized

by researchers and
practitioners that object-
oriented methods are
superior to procedural
approaches for handling
complex systems.
 This advantage extends
to our approach. The
general use of patterns is
considered an advance in
object-oriented methods
because patterns distill the
knowledge and experience
of many developers and are
highly reusable. Patterns
also improve software
quality because they have
been scrutinized by many.
Our Semantic Analysis
Patterns have been shown
to ease the task of building
conceptual models by
directly translating
functional aspects of an

application [Fer00a] and can
also be used to define
Secure SAPs, where the
functionality is
complemented with
authorization and
authentication aspects
[Fer07]. In this paper we
have shown, through a case
study, the ability of SAPs to
compose patterns to build
complex patterns or
complex models in general.
 The component
patterns realize the
specifications of the system.
While experiments with
actual projects are
necessary to prove the
practicality of this approach,
we can say that this
methodology is a better way
to build complex systems
than procedural

programming or ad-hoc
object-oriented methods.
We have also shown our
approach to be convenient
to improve practical
approaches such as XP
[Fer03], which is another
proof of its possible value.
There are other object-
oriented approaches based
on patterns, e.g., several
approaches are discussed in
[Sia01], and we don‟t claim
that our approach is better
than any of these methods,
this would require a detailed
and lengthy study. We do
claim that our approach
allows us to build complex
models in a convenient and
error-free way.

