NAME: MUSA FAUZIYA ISAH

MATRIC NO: 18/MHS02/116

DEPARTMENT: NURSING SCIENCE

DISCUSS THE PHYSIOLOGY OF BALANCE

The vestibular system is the sensory apparatus of the inner ear that helps the body maintain its postural equilibrium. The information furnished by the vestibular system is also essential for coordinating the position of the head and the movement of the eyes. There are two sets of end organs in the inner ear, or labyrinth: the semicircular canals, which respond to rotational movements [angular acceleration] and the utricle and saccule within the vestibule, which respond to changes in the position of the head with respect to gravity[linear acceleration]. The information these orange deliver is proprioceptive in character, dealing with events within the body itself, rather than exteroceptive, dealing with events outside the body, as in the case of the responses of the cochlea to sound.

Functionally these organs are closely related to the cerebellum and to the reflex centres of the spinal cord and brainstem that govern the movements of the eyes, neck, and limbs.

Although the vestibular organs and the cochlea are derived embryologically from the same formation, the otic vesicle, their association in the inner ear seems to be a matter more of convenience than of necessity. From both the developmental and the structural point of view, the kinship of the vestibular organs with the lateral line system of the fish is readily apparent. The lateral line system is made up of a aseries of amll sense organs located in the skin of the head and along the sides of the body of fishes. Each organ contains a crista, sensory hair cells, and a cupula, as found in the ampullae of the semicircular ducts. The cristae respond to waterborne vibrations and to pressure changes.

The anatomists of the 17th and 18th centuries assumed that the entire inner ear, including the vestibular apparatus, is denoted to hearing. They were impressed by the orientation of the semicircular canals, which lie in three planes more or less perpendicular to one another, and believed that the canals must be designed for localizing a source of sound in space. The first investigator to present evidence that

the vestibular labyrinth is the organ of equilibrium was French experimental neurologists Marie- Jean- Pierre Flourens, who in 1824 reported a series of experiments in which he had observed abnormal head movements in pigeons after he had cut each of the semicircular canals in turn. The plane of the movements was always the same as that of the injured canal. Hearing was not affected when he cut the nerve fibres to these organs, but it was abolished when he cut those to the basilar papilla[the birds uncoiled cochlea]. It was not until almost half a century later that the significance of his findings was appreciated and the semicircular canals were recognized as sense organs specifically concerned with the movements and position of the head.