LINEAR TRNSFORMATION

Let P and Q be real vector spaces (their dimensions can be different) and let R be a function with domain P and range in Q (written $R: P \rightarrow Q$

We say R is a linear transformation if
For all $x, y \in P, R(x+y)=R(x)+r(y)$
For all $x \in p, r \in R, R(r x)=r R(x)(R$ is homogenous)

RANK OF MATRIX

The dimension of the range of a linear transformation is called the RANK The rank of a linear transformation are related to each other by th equation rankT + multy $\mathrm{T}=\operatorname{dim}$ (domain)
2. $\left|\begin{array}{lll}1 & 4 & 9 \\ 2 & 7 & 5 \\ 8 & 6 & 3\end{array}\right|$
$\operatorname{Det}(x)=|x|$
$\operatorname{Det}(x)=1\left|\begin{array}{ll}7 & 5 \\ 6 & 3\end{array}\right|-4\left|\begin{array}{ll}2 & 5 \\ 8 & 3\end{array}\right|+9\left|\begin{array}{ll}2 & 7 \\ 8 & 6\end{array}\right|$
$=1|21-30|-4|6-40|+9|12-56|$
$=-9-4(-34)+9(-44)$
$=-9-132-39$
$=-537$
Non singular matrix
$\mathrm{T}: x \rightarrow y$
$X=e, f, g, h, l, j, k$
$Y=2,4,6,8,10$

X y
e
$f \quad 4$
g 6
h 8

10

J codomain
k
domain

