NAME: ADEBAYO PRECIOUS ADEDAMOLA

MATRIC NO: 18/MHS01/010

COURSE CODE/COURSE TITLE: PHS 201/PHYSIOLOGY

MEDICINE AND SURGERY

200 LEVEL

(1)DISCUSS THE LONG TERM RESULATION OF ARTERIAL BLOOD PRESSURE

There are several physiological mechanisms that regulate blood pressure in the long-term, the first of which is the renin-angiotensin-aldosterone system (RAAS).

Renin-Angiotensin-Aldosterone System (RAAS)

Renin is a peptide hormone released by the granular cells of the juxtaglomerular apparatus in the kidney. It is released in response to:

Sympathetic stimulation

Reduced sodium-chloride delivery to the distal convoluted tubule

Decreased blood flow to the kidney

Renin facilitates the conversion of angiotensinogen to angiotensin I which is then converted to angiotensin II using angiotensin-converting enzyme (ACE).

Angiotensin II is a potent vasoconstrictor. It acts directly on the kidney to increase sodium reabsorption in the proximal convoluted tubule. Sodium is reabsorbed via the sodium-hydrogen exchanger. *Angiotensin II* also promotes release of aldosterone.

ACE also breaks down a substance called bradykinin which is a potent vasodilator. Therefore, the breakdown of bradykinin potentiates the overall constricting effect.

Aldosterone promotes salt and water retention by acting at the distal convoluted tubule to increase expression of epithelial sodium channels. Furthermore, aldosterone increases the activity of the basolateral sodium-potassium ATP-ase, thus increasing the electrochemical gradient for movement of sodium ions.

More sodium collects in the kidney tissue and water then follows by osmosis. This results in decreased water excretion and therefore increased blood volume and thus blood pressure.

Anti-Diuretic Hormone (ADH)

The second mechanism by which blood pressure is regulated is release of Anti Diuretic Hormone (ADH) from the OVLT of the hypothalamus in response to thirst or an increased plasma osmolarity.

ADH acts to increase the permeability of the collecting duct to water by inserting aquaporin channels (AQP2) into the apical membrane.

It also stimulates sodium reabsorption from the thick ascending limb of the loop of Henle. This increases water reabsorption thus increasing plasma volume and decreasing osmolarity.

Further Control of Blood Pressure

Other factors that can affect long-term regulation of blood pressure are natriuretic peptides. These include:

Atrial natriuretic peptide (ANP) is synthesized and stored in cardiac myocytes. It is released when the atria are stretched, indicating of high blood pressure.

ANP acts to promote sodium excretion. It dilates the afferent arteriole of the glomerulus, increasing blood flow (GFR). Moreover, ANP inhibits sodium reabsorption along the nephron. Conversely, ANP secretion is low when blood pressure is low.

Prostaglandins act as local vasodilators to increase GFR and reduce sodium reabsorption. They also act to prevent excessive vasoconstriction triggered by the sympathetic nervous and renin-angiotensin-aldosterone systems.

(2)WRITE SHORT NOTES ON THE FOLLOWING

(a)Pulmonary circulation: Pulmonary circulation is the system of transportation that shunts de-oxygenated blood from the heart to the lungs to be re-saturated with oxygen before being dispersed into systemic circulation. Deoxygenated blood from the lower half of the body enters the heart from the inferior vena cava while deoxygenated blood from the upper body is delivered to the heart via the superior vena cava. Both the superior vena cava and inferior vena cava empty blood into the right atrium. Blood flows through the tricuspid valve into the right ventricle. It then flows through the pulmonic valve into the pulmonary artery before being delivered to the lungs. While in the lungs, blood diverges into the numerous pulmonary capillaries where it releases carbon dioxide and is replenished with oxygen. Once fully saturated with oxygen, the blood is transported via the pulmonary vein into the left atrium which pumps blood through the mitral valve and into the left ventricle. With a powerful contraction, the left ventricle expels oxygen-rich blood through the aortic valve and into the aorta: This is the beginning of systemic circulation.

(b)Circle of Willis: The Circle of Willis is the joining area of several arteries at the bottom (inferior) side of the brain. At the Circle of Willis, the internal carotid arteries branch into smaller arteries that supply oxygenated blood to over 80% of the cerebrum. The circle of Willis encircles the stalk of the pituitary gland and provides important communications between the blood supply of the forebrain and hindbrain (between the internal carotid and vertebro-basilar systems following obliteration of primitive embryonic connections). Although a complete circle of Willis is present in some individuals, it is rarely seen radiographically in its entirety; anatomical variations are very common and a well-developed communication between each of its parts is identified in less than half of the population.

(c)Sphlancic circulation: The splanchnic circulation consists of the blood supply to the gastrointestinal tract, liver, spleen, and pancreas. It consists of two large capillary beds partially in series. The small splanchnic arterial branches supply the capillary beds, and then the efferent venous blood flows into the PV. The PV and hepatic artery supply blood flow to the liver.

(d)Coronary circulation: Coronary circulation, part of the systemic circulatory system that supplies blood to and provides drainage from the tissues of the heart. In the human heart, two coronary arteries arise from the aorta just beyond the semilunar valves; during diastole, the increased aortic pressure above the valves forces blood into the coronary arteries and thence into the musculature of the heart. Deoxygenated blood is returned to the chambers of the heart via coronary veins; most of these converge to form the coronary venous sinus, which drains into the right atrium.

(e)Cutaneous circulation: The cutaneous circulation is the circulation and blood supply of the skin. The skin is not a very metabolically active tissue and has

relatively small energy requirements, so its blood supply is different to that of other tissues.

(3) Discuss the cardiovascular adjustments made during exercise

The integrated response to severe exercise involves fourfold to fivefold increases in cardiac output, which are due primarily to increases in cardiac rate and to a lesser extent to augmentation of stroke volume. The increase in stroke volume is partly due to an increase in end-diastolic cardiac size (Frank-Starling mechanism) and secondarily due to a reduction in end-systolic cardiac size. The full role of the Frank-Starling mechanism is masked by the concomitant tachycardia. The reduction in end-systolic dimensions can be related to increased contractility, mediated by beta adrenergic stimulation. Beta adrenergic blockade prevents the inotropic response, the decrease in end-systolic dimensions, and approximately 50% of the tachycardia of exercise. The enhanced cardiac output is distributed preferentially to the exercising muscles including the heart. Blood flow to the heart increases fourfold to fivefold as well, mainly reflecting the augmented metabolic requirements of the myocardium due to near maximal increases in cardiac rate and contractility. Blood flow to the inactive viscera (e.g., kidney and gastrointestinal tract) is maintained during severe exercise in the normal dog. It is suggested that local auto-regulatory mechanisms are responsible for maintained visceral flow in the face of neural and hormonal autonomic drive, which acts to constrict renal and mesenteric vessels and to reduce blood flow. However, in the presence of circulatory impairment, where oxygen delivery to the exercising muscles is impaired as occurs to complete heart block where normal heart rate increases during exercise are prevented, or in congestive right heart failure, where normal stroke volume increases during exercise are impaired, or in the presence of severe anemia, where oxygen-carrying capacity of the blood is limited, visceral blood flows are reduced drastically and blood is diverted to the exercising musculature. Thus,, visceral flow is normally maintained during severe exercise as long as all other compensatory mechanisms remain intact. However, when any other compensatory mechanism is disrupted (even the elimination of splenic reserve in the dog), reduction and diversion of visceral flow occur.