Osaro Evelyn princess 18/MHS 07/046 Pharmacology Urine formation is a blood cleansing function. Normally, about 1,300 mL of blood (26% of cardiac output) enters the kidneys. Kidneys excrete the unwanted substances along with water from the blood as urine. Normal urinary output is 1 L/day to 1.5 L/day. ## **Processes of Urine Formation** When blood passes through glomerular capillaries, the plasma is filtered into the Bowman capsule. This process is called glomerular filtration. ## **URINE CONCENTRATION** When the glomerular filtrate passes through renal tubule, its osmolarity is altered in different segments. ## 1. BOWMAN CAPSULE Glomerular filtrate collected at the Bowman capsule is isotonic to plasma. This is because it contains all the substances of plasma except proteins. Osmolarity of the filtrate at Bowman capsule is 300 mOsm/L. # 2. PROXIMAL CONVOLUTED TUBULE When the filtrate flows through proximal convoluted tubule, there is active reabsorption of sodium and chloride followed by obligatory reabsorption of water. So, the osmolarity of fluid remains the same as in the case of Bowman capsule, i.e. 300 mOsm/L. Thus, in proximal convoluted tubules, the fluid is isotonic to plasma. ### 3. THICK DESCENDING SEGMENT When the fluid passes from proximal convoluted tubule into the thick descending segment, water is reabsorbed from tubule into outer medullary interstitium by means of osmosis. It is due to the increased osmolarity in the medullary interstitium, i.e. outside the thick descending tubule. The osmolarity of the fluid inside this segment is between 450 and 600 mOsm/L. That means the fluid is slightly hypertonic to plasma. ## 4. THIN DESCENDING SEGMENT OF HENLE LOOP As the thin descending segment of Henle loop passes through the inner medullary interstitium (which is increasingly hypertonic) more water is reabsorbed. This segment is highly permeable to water and so the osmolarity of tubular fluid becomes equal to that of the surrounding medullary interstitium. In the short loops of cortical nephrons, the osmolarity of fluid at the hairpin bend of loop becomes 600 mOsm/L. And, in the long loops of juxtamedullary nephrons, at the hairpin bend, the osmolarity is 1,200 mOsm/L. Thus in this segment the fluid is hypertonic to plasma. ## 5. THIN ASCENDING SEGMENT OF HENLE LOOP When the thin ascending segment of the loop ascends upwards through the medullary region, osmolarity decreases gradually. Due to concentration gradient, sodium chloride diffuses out of tubular fluid and osmolarity decreases to 400 mOsm/L. The fluid in this segment is slightly hypertonic to plasma. ### 6. THICK ASCENDING SEGMENT This segment is impermeable to water. But there is active reabsorption of sodium and chloride from this. Reabsorption of sodium decreases the osmolarity of tubular fluid to a greater extent. The osmolarity is between 150 and 200 mOsm/L. The fluid inside becomes hypotonic to plasma. ### 7. DISTAL CONVOLUTED TUBULE AND COLLECTING DUCT In the presence of ADH, distal convoluted tubule and collecting duct become permeable to water resulting in water reabsorption and final concentration of urine. It is found that in the collecting duct, Principal (P) cells are responsible for ADH induced water reabsorption. Reabsorption of large quantity of water increases the osmolarity to 1,200 mOsm/L .The urine becomes hypertonic to plasma.