
Name: Omizu Bernice Efemena

Matric no: 18/MHS02/150 Department: Nursing

Urine Formation

Waste is excreted from the human body mainly in the form of urine. Our kidneys play a major role in the process of excretion. Constituents of normal human urine include 95 percent water and 5 percent solid wastes. It is produced in the nephron which is the structural and functional unit of the kidney. Urine formation in our body is mainly carried out in three phases namely

- 1. Glomerular filtration,
- 2. Reabsorption
- 3 Secretion

Urine formation

Mechanism of urine Formation

The mechanism of urine formation involves the following steps:

Glomerular Filteration

Glomerular filtration occurs in the glomerulus where blood is filtered. This process occurs across the three layers- epithelium of Bowman's capsule, endothelium of glomerular blood vessels, and a membrane between these two layers.

Blood is filtered in such a way that all the constituents of the plasma reach the Bowman's capsule, except proteins. Therefore, this process is known as ultrafiltration.

Reabsorption

Around 99 percent of the filtrate obtained is reabsorbed by the renal tubules. This is known as reabsorption. This is achieved by active and passive transport.

Secretion

The next step in urine formation is the tubular secretion. Here, tubular cells secrete substances like hydrogen ion, potassium ion, etc into the filtrate. By this process, the ionic, acid-base and the balance of other body fluids are maintained. The secreted ions combine with the filtrate and form urine. The urine passes out of the nephron tubule into a collecting duct.

The concentration of urine

As already indicated, the loop of Henle is critical to the ability of the kidney to concentrate urine. The high concentration of salt in the medullary fluid is believed to be achieved in the loop by a process known as countercurrent exchange multiplication. The principle of this process is analogous to the physical principle applied in the conduction of hot exhaust gases past cold incoming gas so as to warm it and conserve heat. That exchange is a passive one, but in the kidney the countercurrent multiplier system uses energy to "pump" sodium and chloride out of the ascending limb of the loop into the medullary fluid. From there it enters (by diffusion) the filtrate (isotonic with plasma) that is entering the descending limb from the proximal tubule, thus raising its concentration a little above that of plasma. As this luminal fluid in turn reaches the ascending limb, and subsequently the distal tubule, it in turn provides more sodium to be pumped out into the surrounding fluid or blood, if necessary, and transported (by diffusion) back into the descending limb; this concentrating process continues until the osmotic pressure of the fluid is sufficient to balance the resorptive power of the collecting ducts in the medulla, through which all of the final urine must pass. This resorptive capacity in the ducts is regulated by antidiuretic hormone (ADH). which is secreted by the hypothalamus and stored in the posterior pituitary gland at the base of the brain. In the presence of ADH, the medullary collecting ducts become freely permeable to solute and water. As a consequence, the fluid entering the ducts (en route to the renal pelvis and subsequent elimination) acquires the concentration of the interstitial fluid of the medulla; i.e., the urine becomes concentrated. On the other hand, in the absence of ADH, the collecting ducts are impermeable to solute and water, and, thus, the fluid in the lumen, from which some solute has been removed, remains less concentrated than plasma; i.e., the urine is dilute.

The secretion of ADH by the hypothalamus and its release from the posterior pituitary is part of a feedback mechanism responsive to the tonicity of plasma. This interrelation between plasma osmotic pressure and ADH output is mediated by specific and sensitive receptors at the base of the brain. These receptors are particularly sensitive to sodium and chloride ions. At normal blood tonicity there is a steady receptor discharge and a steady secretion of ADH. If the plasma becomes hypertonic (i.e., has a greater osmotic pressure than normal), either from the ingestion of crystalloids such as common salt, or from shortage of wThe secretion of ADH by the hypothalamus and its release from the posterior pituitary is part of a feedback mechanism responsive to the tonicity of plasma. This interrelation between plasma osmotic pressure and ADH output is mediated by specific and sensitive receptors at

the base of the brain. These receptors are particularly sensitive to sodium and chloride ions. At normal blood tonicity there is a steady receptor discharge and a steady secretion of ADH. If the plasma becomes hypertonic (i.e., has a greater osmotic pressure than normal), either from the ingestion of crystalloids such as common salt, or from shortage of water, receptor discharge increases, triggering increased ADH output, and more water leaves the collecting ducts to be absorbed into the blood. If the osmotic pressure of plasma becomes low, the reverse is the case. Thus water ingestion dilutes body fluids and reduces or stops ADH secretion; the urine becomes hypotonic, and the extra water is excreted in the urine

The situation is complex because there are also receptors sensitive to changes in blood volume that reflexively inhibit ADH output if there is any tendency to excessive blood volume. Exercise increases ADH output and reduces urinary flow. The same result may follow emotional disturbance, fainting, pain, and injury, or the use of certain drugs such as morphine or nicotine. Diuresis is an increased flow of urine produced as the result of increased fluid intake, absence of hormonal activity, or the taking of certain drugs that reduce sodium and water reabsorption from the tubules. If ADH secretion is inhibited by the drinking of excess water, or by disease or the presence of a tumour affecting the base of the brain, water diuresis results; and the rate of urine formation will approach the rate of 16 millilitres per minute filtered at the glomeruli. In certain disorders of the pituitary in which ADH secretion is diminished or absent—e.g., diabetes insipidus—there may be a fixed and irreversible output of a large quantity of dilute urine.