AGBOOLA ABIOLA

17/SCI01/007

COMPUTER SCINCE
REVISED QUESTION PART 2

ANSWERS

15)

i) $\quad \mathrm{L}=\{\Sigma, \mathrm{a}, \mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{bb}\}$
$\Sigma+a+b+a a+a b+b a+b b$
$\left(\sum+a+b\right)\left(\sum+a+b\right)$
ii) $\mathrm{L}=\{0,2,4,6\}$

Using length 2
$\left((a+b)(a+b)^{*}\right.$
iii) $\mathrm{L}=\mathrm{a}(\mathrm{a}+\mathrm{b})^{*} \mathrm{a}$
iv) $\quad \mathrm{L}=\mathrm{a}(\mathrm{a}+\mathrm{b})^{*} \mathrm{~b}+\mathrm{b}(\mathrm{a}+\mathrm{b})^{*} \mathrm{a}$
16)

Regular expression are used for representing certain set of strings in an algebraic fashion
i) The symbol $\boldsymbol{\lambda}$ and the pair () are regular expression
ii) Each letter A in Σ is a regular expression
iii) if r is a regular expression then r^{*} is a regular expression
iv) if r 1 and r 2 are regular expression then r 1 r 2 is a regular expression all regular expression are formed that way'
17)

$$
\text { i) } A=\{a, b\} \text { Let } r=L(r)
$$

ii) $r=a^{*}$
$r=a a^{*}$
a u b*
(aub)*
$R=(a u b)^{*} b b$
18)
i) Consists of all B's including $\boldsymbol{\lambda}$ (ii) Consists of all positive powers of 'a' excluding the empty word
iii) Consists of ' a ' or any word in b (iv) The language consists of all words over the given alphabet
v) It must end with bb (vi) It consists of words in a and b
19)
i) L1 consists of words starting with one or more B followed by two or more A
ii) L2 consists of words starting with one or more A followed by two or more B followed by one A
iii) L3 consists of words starting with one A followed by one or more B
iv) $\mathrm{L} 1=\mathrm{L}(\mathrm{r})$ for all $\mathrm{I}=1,2,3$
$\mathrm{L} 1=\mathrm{bb}^{*} \mathrm{aaa}{ }^{*}$
$\mathrm{L} 2=\mathrm{aa} * \mathrm{bbb}^{*} \mathrm{a}$
$\mathrm{L} 3=\mathrm{abb} *$
20)
i) It is any set represented by a regular expression (ii) The set represented by R1R2 is the union of the sets represented by R1 and R2
21)
i) $\{0\}\{1\}$ are represented by 1 and 0 respectively. Therefore 0 is obtained by concatenating 1,1 , and 0
ii) This is the union of $\{01\}$ and $\{10\}$ then we have $01+10$ (iii) This is represented by $a b b+a+b+b b a$
iv) Is also represented as $\boldsymbol{\lambda}+01(\mathrm{v})$ represented as $\{a\}^{*}$ regular expression for this set is a*
vi) this is the regular expression for the set $a\{a\}^{*}$
22)
i) The set $\{a b b, a, b, b a a\}$ is represented by $a b b+a+b+b a a$
ii) $\{0\}\{1\}$ are represented by 1 and 0 respectively. 0 is obtained by concatenating $1,1,0$
iii) represented as $\{1\}^{*}$ regular expression for this set is 1^{*}
23)
i) A grammar is a 4-tuple such that $G=(V, T, P, S)$
$\mathrm{V}=$ Finite non-empty set of non-terminal
$\mathrm{T}=$ Finite set of terminal symbols
$\mathrm{P}=$ Finite non-empty set of production rules
S = Start symbol
ii) A formal grammar is a set of rules, where as a formal language is a set of strings. A regular grammar is a formal grammar that describes a regular language
24)

A sentential form is any derivable from the start symbol. Thus, in the derivation of $\mathrm{E}=\mathrm{E}^{*} \mathrm{E}=\mathrm{E}^{*}(\mathrm{E})=\mathrm{E}^{*}(\mathrm{E}+\mathrm{E})$

