questions:15-24

$$
\ddot{P}_{\text {own }}=L=\{\varepsilon\} \sim L>3, L=L^{n-1} \text { L'yn }=1
$$

Question 15
The language e whose length as at most 2

$$
(a+b)(a+b)
$$

Language gog even length
$((a+b)(a+b))^{*}$
D) Language starting and andurg with the some letter $a(a+b)^{*} a+b(a+b)^{6} b$
(w) Langrage starting and ending wot the dyfuert

$$
a(a+b) * b+b(a+b)^{*} a
$$

(question 16
Regular expression: Let ' L ' be a language ever an alp the ' L ' is a regular laingege, if and only in these es Adenotuwar expression ' R ' cover an alphabet such that L e $L \ddot{\psi}+R=R$ expression

$$
\begin{aligned}
& L_{2} D R+R \varnothing=\varnothing \\
& L_{3} E R=R \varepsilon=R
\end{aligned}
$$

L\& $E^{*}=\varepsilon$ and $D^{*}=\varepsilon$
LI $\quad K+R=R$
Lb $\quad R^{*} R^{*}=R^{t}$
$\begin{array}{ll}-1 & R R * \\ L & \left(R^{*}\right)^{e}=R^{*}=R^{*}\end{array}$
Li $\quad E+R R^{*}=E+R^{*} R=R^{2}$

$$
\begin{array}{ll}
-L_{12} & (P+Q)^{*}=P(Q P)^{*} \\
& (P+Q) R=P R+Q R \\
& R(P+Q)=R P+R Q
\end{array}
$$

- Regular expression are nod for representing set of stroy g on

Question 17
Let ' A ' bo a non empty alphasch the expression ' r ' ad its corruponding lagging $L(1)$ is dyed as;

- The hysbol T (emptavioud) and the par ()
xty noterem reater expresim.
- cach litter ${ }^{24}$ i. A a a regular encpressien
- It ir a regular appresson, then r^{4} es a regnlay appressm
- If, ard is ane regerlar espressuons, teen rilu es x regnelar exprossen.
 suressmo.
The symiols are; ()$,+, U, T$
Questian 18
$A=\{a, b\}$
i) Le $r=b^{*} \div$ The langnafe $L(\cdot)$ eonsists of all power of ${ }^{\prime} a$ ' ucluiding T.
ii) Lit $N=a a^{n} \div$ The $L(c)$ consusts of alle pest we powar of t_{a} ? exdidung the ompty wood.
w) $I d=$ a $\sqrt{ } b^{+}-T h L(r)$ consest's of ' a ' or ary vood i b
- $\operatorname{Litr}_{2}(\text { aub })^{A} \div$ The largnage connsts of all words
over ε
v) Let $v=a a(a \quad u b)^{7}-$ The languag must begor with an
vi) Let $v=(a n b)^{x}$ - The lang nage consusts of vord miten esther ir a or b.

Murthen 19
$\Sigma: \therefore, 6\}$

$$
\begin{aligned}
& L_{1}\left\{L^{m}, n / m>0, n>1\right\} \\
& L_{2}=\left\{a^{n} \cdot b^{m} a \mid m>1, n>0\right\} \\
& S_{3}=\left\{b^{m} / n>0\right\}
\end{aligned}
$$

Selution
$L=\{b a A$, bbaa, LbaAa, $\}$
$L_{2}=\left\{\begin{array}{l}L_{3} \\ L_{3} b a, a b b b a, ~ a a l b a, \ldots \\ a b, a b b, a b b b b, \cdots\}\end{array}\right.$
Musition 20
Regular sei ass ay set representad by a noplar expressix,
 is antlel. . ogidar set
R_{2}. itrong us $L\left(R_{1}+R_{2}\right)$ is a stroy form R_{1} or a stong foos
R_{2}.
A itrong in $L(R R 2)$ is astany from R_{1} jolloned by a strueg fom $R=$

Quertan 21
ii) $\{$ boab $\}=$ ionupress of set $\{n\}$ i $\{b\}$. It ix ditaved by ioneakenly $b_{1} a_{1}, a$ and b
iii) $\{01,10\}$: is the mave of $[01\}$ and $\{10\}$ the we done $01+10$ (2) tapdon, 10$\}$: Whe uminur of $\left\{\left\}\right.\right.$ and $\{10\}^{3}$ then we have $T+10$
v) $\{a b b, a, b, b b a\} \div$ a represettad by $a b b+a+b+b b a$
vi) $\{\text { epolon, a paa, aan …\}:Lt rapresents ects } l a\}^{*}$
vii) $\left\{\right.$ epsilen; $11,1111,1111, \cdots 3$ nproents the set $\{1\}^{*}$ Regular eupreseon for lt at $1(1)^{*}$

Quistion 22
i) Set of all strongs of a^{3} and b^{\prime} ' endury is aa lana, aaca, baa, bbaa, …?
ii) Set of all stimus of 0^{3} and l's hegorowng with 1 and endveg with O

$$
\{10,110,1110, \cdot \cdot]
$$

, iat of Capulon, $11,1111,11111, \ldots 3$
'Reposel et $\{1\}^{\text {to }}$, the regular expren con for the et $11 D^{y}$
Qivestion 23

- Grammar may bede dy ined as founte set of molo and doulle langnaiges
(4) A langnggese is a set of ilmuss gonerated by grounsw whin gromera un jousto sot of nites ased to desmbe hargrage.

$$
G T=\{v, \tau, s, P\}
$$

G is dypued as a quadiuph is $G=\{V, T, S, p\}$
V is lenown es Vinable

Comalleltios)
S is known as start symbel
P is a funte set of productuence
Censuder He gramma.
$A=\operatorname{CSS}\},\{a, 6\}, s, P\}$ with P guen by

$$
S \rightarrow a S b
$$

Soluctur

$$
\begin{aligned}
& \mathrm{S} \rightarrow a S b \longrightarrow a T b \rightarrow a S \\
& S \longrightarrow a S b \longrightarrow a+L b \longrightarrow a+4 \rightarrow a_{a} L L
\end{aligned}
$$

b.b b
$[7, a b$, dabb, anabbb, ... 3

$$
\left\{a^{\prime} b^{\prime} \mid n \geq 0\right\}
$$

