1. DIAMOND AND GRAPHITE ARE COVALENT CRYSTALS, COMPARE THEIR PROPERTIES

SIMILARITIES

- Both graphite and diamonds are made out of pure carbon. The chemical composition of the two is exactly the same.
- In both graphite and diamonds the carbon atoms share valence electrons, electrons in the outermost electron shell, with other carbon atoms in the structure
- The melting points of both graphite and diamond are very high. The melting point of graphite is 4200 degrees Kelvin, and diamond's melting point is 4500 degrees Kelvin.
- Both graphite and diamond are naturally occurring on Earth.

PROPERTY	DIAMOND	GRAPHITE	
Hardness	Very hard	Soft and slippery	
Hybridisation	Sp ³ with no ∏ electrons	Sp ² with ∏ electrons	
Melting point	3930⁰C	3000°C	
Structure	Tetrahedral bonded in all	Layer structure with fused	
	directions	ring	
Density (g/cm ³)	3.51	2.22	
forces	Strong covalent force	Vander waal force	

2. BINARY HYDRIDES

A. <u>Ionic hydrides:</u> they are formed when molecular H₂ reacts with alkali and alkaline earth metals. These halides are solids with high meting point temperatures. The halides are string bronzed bases that accept protons from donors like water.

 $\textbf{2Li} + \textbf{H}_2 \! \rightarrow \textbf{2LiH}$

- B. <u>**Covalent hydrides**</u>: they are formed when a hydrogen atom and one or more non-metals form compounds. This occurs when hydrogen covalently bonds to a more electropositive element by sharing electron pairs. These hydrides can be volatile or non-volatile. Volatile simply means being readily able to be vaporized at low temperatures. One such example of a covalent hydride is when hydrogen bonds with chlorine and forms hydrochloric acid (*HCl*). Also CH₄, H₂S, NH₃, PH₃. Some re polymeric boranes, silanes and hydrocarbons.
- C. <u>Interstitial hydrides:</u> these are also known as metallic hydrides. They are nonstoichiometric hydrides (meaning that the fraction of H atoms to the metals are not fixed) formed when hydrogen bonds with transition metals like iron, vanadium, nickel etc. The molecular hydrogen dissolves into metals only to be released on heating.

3. COMPARE AND CONTRAST THE FOUR TYPES OF CRYSTALS

Ionic crystalsCovalent crystalsMolecular crystalsMetallic crystals
--

Composed of	The atoms are held	The lattice are	The lattice points
charged species and	in an extensive	occupied by	are occupied by
constitutes of	three-dimensional	molecules rather	atoms the same
different sizes of	network entirely by	than atoms held by	metals held by
anions and cations	covalent bond	intermolecular	metallic bonds
		forces	
High melting points	High melting points	Low melting points	Low melting points
They conduct	They don't conduct	Por conductors of	They are good
electricity in molten	electricity because	electricity	conductors of
or aqueous state	they're made up of		electricity due to
	atoms		mobility of
			delocalised
			electrons

4. SIMILARITIES AND DIFFERENCES BETWEEN GROUP 5,6 & 7 ON THE PERIODIC TABLE

Similarities

- i. They are electronegative elements
- ii. They are non-metallic solids which occur in several allotropic modifications and they readily burn in air.
- iii. They do not react with air at room temperatures

Differences

- i. They all have different valence electron in their outermost shells
- ii. Groups 5 & 6 belong to a class of transition metals while group 7 belongs to halogen class

5. SHORT NOTE ON THE 5 CLASSES OF OXIDES

- A. <u>Acidic oxides (acid anhydrides)</u>: these are oxide of non-metals that dissolve in, and react with water to produce acids e.g CO_2 , SO_2 , NO_2 & P_2O_5 [exists as a dimer (P_4O_{10})]
 - Sulphur (VI) oxide is the acid anhydride of teraoxosulphate(VI) acid $SO_{3(g)} + H_2O_{(I)} \to H_2SO_{4(aq)}$
 - Nitrogen (IV) oxide is a mixed anhydride because it produces 2 acids when it reacts with water

 $2NO_{2(g)} + H_2O_{(I)} \rightarrow HNO_{2(aq)} + HNO_{3(aq)}$

B. **<u>Basic oxides</u>**: these are oxides of metals e.g Na₂O, CaO, CuO, MgO and Fe₂O₃ that react with acids to form salt and water only. They are solids.

 $\begin{array}{rcl} CuO_{(s)} + & H_2SO_{4(aq)} \rightarrow & CuSO_{4(aq)} + & H_2O_{(l)} \\ (blue) & (colourless) & (blue) \end{array}$

Basic oxides that dissolve in water to form basic hydroxides are called *alkalis* e.g Calcium oxide CaO reacts with water to form calcium peroxide solution.

$$CaO_{(s)} + H_2O_{(I)} \rightarrow Ca(OH)_{2(aq)}$$

Water solution of an alkali gives an alkaline solution

- C. <u>Amphoteric oxides:</u> these are oxides of metals that have both acidic and basic properties e.g Aluminium oxide (Al₂O₃), Zinc oxide (ZnO), Lead (II) oxide (PbO) and Tin (IV) oxide (SnO₂).
 - a. Reaction of zinc oxide: $ZnO_{(s)} + 2HCI_{(aq)} \rightarrow ZnCI_{2(aq)} + H_2O_{(l)}$ (base) (acid) (salt) (water) $ZnO_{(s)} + 2NaOH_{(aq)} \rightarrow Na_2ZnO_{2(aq)} + H_2O_{(l)}$ (acid) (base) (salt) (water)
- Neutral oxides: these are oxides of non-metals that have no basic or acidic properties (they have no action on litmus paper) e.g steam (H₂O_(g)); carbon (II) oxide (CO); nitrogen (I) oxide (N₂O) and nitrogen (II) oxide (NO).
- E. Peroxides: these are higher oxides of metals. They have one oxygen atom more than the normal oxides e.g Sodium peroxide (Na₂O₂), Lead (IV) oxide (PbO₂) and barium peroxide (BaO₂). They react with an acid to form hydrogen peroxide

 $Na_2O_{2(s)} + 2HCl_{(aq)} \rightarrow 2NaCl_{(aq)} + H_2O_{2(l)}$

Higher oxides or peroxides do not undergo neutralisation with acids. For instance, lead (II) oxide reacts with concentrated HCl to give a salt, water and chlorine.

 $PbO_2 + 4HCI_{(aq)} \rightarrow PbCI_{(aq)} + 2H_2O_{(l)} + CI_{2(g)}$