Differences between Interpreter and Compiler

[image: ]
image1.png
Interpreter translates just one statement of the program at a time
into machine code.

An interpreter takes very less time to analyze the source code.
However, the overall time to execute the process is much slower.

An interpreter does not generate an intermediary code. Hence, an

interpreter is highly efficient in terms of its memory.

Keeps translating the program continuously till the first error is
confronted. If any error is spotted, it stops working and hence
debugging becomes easy.

Interpreters are used by programming languages like Ruby and
Python for example.

Compiler scans the entire program and translates the whole of it
into machine code at once.

A compiler takes a lot of time to analyze the source code. However,
the overall time taken to execute the process is much faster.

A compiler always generates an intermediary object code. It will
need further linking. Hence more memory is needed.

A compiler generates the error message only after it scans the
complete program and hence debugging is relatively harder while
working with 2 compiler.

Compliers are used by programming languages like C and C++ for
example.




