NAME: Carlos Minimah
[bookmark: _GoBack]MATRIC NUMBER: 18/sci01/102
COURSE CODE: CSC308
COURSE TITLE: Formal Methods And Software Development
ASSIGNMENT
Question

1. Briefly distinguish between the axiomatic and model oriented approach to Formal Methods.
2. You are on a team that is working on a mission-critical system. You have a simple task of suggesting one of the two approaches to use to verify your specifications. Which of the two approaches are you going to advise them to use and why?
3. Using the Z Specification, model the process of using a library.
ANS:
Number 1:
	AXIOMATIC ORIENTED APPROACH
	MODEL ORIENTED APPROACH

	The axiomatic approach focuses on the properties that the proposed system is to satisfy
	The model oriented approach is the specification or abstraction of a model/entity of the real world that contains the essential details.

	It has the advantage that the implementer is not constrained to a particular choice of implementation
	They serve to explain the behavior of a particular entity

	It does not support future behavior predictions
	It may be used to predict the future behaviors of the entity		

Number 2:
I would suggest the use of the model-oriented approach to the system in the question above. This is due to the fact that the model-oriented approach will first; produce solutions that can be used again. And also allows simplification and abstraction of more complex systems.

Number 3:
SOLUTION:
· Assume the following types for library users and library books:
 [USER, BOOK]
· Define MESSAGE as follow:
MESSAGE :: = ‘OK’
| ‘Book not available’
| ‘Invalid return

· Define the abstract state of the library system
LibSys
available: P BOOK
borrowed: BOOK 7→ USER
available ∪ dom borrowed = BOOK
available ∩ dom borrowed = ∅

· Define ∆LibSys
∆LibSys
available, available ′ : P BOOK
borrowed, borrowed ′ : BOOK 7→ USER
available ∪ dom borrowed = BOOK
available ∩ dom borrowed = ∅
available ′ ∪ dom borrowed ′ = BOOK
available ′ ∩ dom borrowed ′ = ∅
· Define ΞLibSys
ΞLibSys =b
[∆LibSys | borrowed ′ = borrowed ∧ available ′ = available ′]

· Define the initial abstract state
InitLibSys ′
LibSys ′
available ′ = BOOK
borrowed ′ = ∅

· Defining CheckOut operation (successful case)
CheckOutOK
∆LibSys
u? : USER
b? : BOOK
rep! : MESSAGE
b ? ∈ available
available ′ = available \ { b ? }
borrowed ′ = borrowed ∪ { b ? ֏ u ? }
rep! = ‘OK’

· Error case: b ? 6∈ available
NotAvailable
ΞLibSys b? : BOOK
rep! : MESSAGE
b ? 6∈ available
rep! = ‘Book not available’
· A total definition of CheckOut
CheckOut =b CheckOutOK ∨ NotAvailable

· Define ReturnOK for returning a book (successful case)
ReturnOK
∆LibSys
u? : USER
b? : BOOK
rep! : MESSAGE
(b ? ֏ u ?) ∈ borrowed
available ′ = available ∪ { b ? }
borrowed ′ = borrowed \ { b ? ֏ u ? }
rep! = ‘OK

· Error case: recording an incorrect return
InvalidReturn
ΞLibSys
u? : USER
b? : BLOCK
rep! : MESSAGE
(b ? ֏ u ?) 6∈
borrowed
rep! = ‘Invalid return’
· A total definition for Return
Return =b ReturnOK ∨ InvalidReturn
