NAME: OBROZIE IRENE UYOYOGHENE

MATRIC NO: 17/SCI01/057
1a(i) Concept of formal methods;
[image: image3.jpg]ers models Tasks models System models

‘ognitive model

Contextual
information

Formal methods are intended to systematize and introduce rigor into all the phases of software development.
1aii)
Reasons why we consider formal methods;

-This helps us to avoid overlooking critical issues

-provides a standard means to record various assumptions and decisions

-forms a basis for consistency among many related activities.

1b). Nonfunctional requirements describe the general characteristics of a system(quality attributes).
WHILE

Functional requirements describe how a product must behave, what its features and functions.
2a).The recommended development process of software engineering methodology includes;

-WATERFALL MODEL

-PROTOTYPING MODEL

-AGILE SOFTWARE DEVELOPMENT METHODOLOGY

-SPIRAL MODEL

· Waterfall Model: The waterfall model is a breakdown of project activities into linear sequential phases, where each phase depends on the deliverables of the previous one and corresponds to a specialisation of tasks. The approach is typical for certain areas of engineering design. In software development, it tends to be among the less iterative and flexible approaches, as progress flows in largely one direction ("downwards" like a waterfall) through the phases of conception, initiation, analysis, design, construction, testing, deployment and maintenance.Moreover, this methodology also talks about the fact that going back to deal with the changes is not possible.

Pros:

· Easy to understand and functional

· Simple enough to handle as model is rigid

Cons;
· No option to know possible outcome of a project

· Not excellent for long and ongoing projects

· Prototyping Methodology: It is a specialized software development procedure that initiates developers towards making only the sample of the resolution to validate its functional essence to the customers and make essential changes before creating the authentic final solution.

The prototyping model is a systems development method in which a prototype is built, tested and then reworked as necessary until an acceptable outcome is achieved from which the complete system or product can be developed. This model works best in scenarios where not all of the project requirements are known in detail ahead of time. It is an iterative, trial-and-error process that takes place between the developers and the users.
Pros:

· Gives clear idea about the functional process of the software

· Reduces the risk of failure in a software functionality

Cons:

· Excessive involvement of client can affect processing

· Too many changes affect the workflow of the software
· Agile Software Development Methodology: As an innovative approach, the agile software development methodology is used for articulating a well-organized project management procedure allowing for recurrent alterations.Certainly, such type of a methodology is one theoretical outline for undertaking several software engineering projects.Another good thing about it is that it minimizes peril by creating software in short time boxes, known as iterations, which happen to last from one week to one month.

Pros:

· Adaptive approach that responds to changes favorably

· Allows for direct communication to maintain transparency

· Improved quality by finding and fixing defects quickly and identifying expectation mismatches early.

Cons:

· Focuses on working with software and lacks documentation efficiency

· Chances of getting off-track as outcome are not clear
· Rapid Application Development: Rapid application development (RAD) describes a method of software development which heavily emphasizes rapid prototyping and iterative delivery. The RAD model is, therefore, a sharp alternative to the typical waterfall development model, which often focuses largely on planning and sequential design practices.In disparity to the waterfall model, which emphasizes meticulous specification and planning, the RAD approach means building on continuously evolving requirements, as more and more learnings are drawn as the development progresses.
Pros:
· Assists client in taking quick reviews

· Encourages feedback from customers for improvement

Cons:

· Dependant on the team for performance

· Works on modularized system confined on this methodology

· Spiral Model: The spiral model combines the idea of iterative development with the systematic, controlled aspects of the waterfall model. This Spiral model is a combination of iterative development process model and sequential linear development model i.e. the waterfall model with a very high emphasis on risk analysis. It allows incremental releases of the product or incremental refinement through each iteration around the spiral.
Spiral Model - Design

The spiral model has four phases. A software project repeatedly passes through these phases in iterations called Spirals.
-Identification
-Design
-Construct or Build
-Evaluation and Risk Analysis

Pros:

· Allows for additional functionality later

· Suitable for highly risky projects with varied business needs

Cons:

· Not appropriate for low-risk projects

· Might get continued and never finish
2b) [image: image1][image: image2.jpg]

The figure above show that formal methods can assume various forms and levels of rigor. At one extreme is the least rigorous level of rigour while most rigorous level of rigor lies at the other extreme.
3a. Key differences between Propositional logic and First order logic
· Propositional Logic converts a complete sentence into a symbol and makes it logical whereas in First-Order Logic relation of a particular sentence will be made that involves relations, constants, functions, and constants.

· The limitation of Propositional logic is that it does not represent any individual entities whereas First order logic can easily represent the individual establishment that means if you are writing a single sentence then it can be easily represented in First order logic.
· Propositional logic does not signify or express the generalization, specialization or pattern for example ‘QUANTIFIERS’ cannot be used in PL but in First order logic users can easily use quantifiers as it does express the generalization, specialization, and pattern.
3aii) DISJUNCTION
	A
	B
	C
	A U B U C

	T
	T
	T
	T

	T
	T
	F
	T

	T
	F
	T
	T

	T
	F
	F
	T

	F
	T
	T
	T

	F
	T
	F
	T

	F
F
	F
F
	T
F
	T
F

CONJUNCTION

	A
	B
	C
	A U B U C

	T
	T
	T
	T

	T
	T
	F
	F

	T
	F
	T
	F

	T
	F
	F
	F

	F
	T
	T
	F

	F
	T
	F
	F

	F
F
	F
F
	T
F
	F
F

NEGATION

	A
	B
	C
	~A ~B ~C

	T
	T
	T
	F F F

	F
	F
	F
	T T T

3b.) m1=mortal

 m2=man

 P1=every man is mortal

 P2=smith is a man

 [Smith is mortal]

 ∀(m2): m1 (p1, p2)

 4a) o=object

 m=monkey

~m=not monkey

∃(o):m v ~m
4b.) Types of formal Specification;

- Algebraic Specification
The use of modularization, datatypes, and object oriented programming have led to a further model called algebraic specifications, as developed by Guttag. In this model we are more concerned about the behavior of objects defined by programs rather than the details of their implementation.

-Z specification
The Z notation is a formal specification language used for describing and modelling computing systems. It is targeted at the clear specification of computer programs and computer-based systems in general.

-Model-Based Languages
One approach to formal specifications is to build a model of the intended system by describing the different states the system could be in and the operations that will change the state. The states are often described with sets, sequences, relations, and functions, and the operations with predicates in terms of pre- and post-conditions

5a.)A well-formed formula: In mathematical logic, propositional logic and predicate logic, a well-formed formula, abbreviated WFF or wff, often simply formula, is a finite sequence of symbols from a given alphabet that is part of a formal language.A formal language can be identified with the set of formulas in the language.A formula is a syntactic object that can be given a semantic meaning by means of an interpretation. Two key uses of formulas are in propositional logic and predicate logic.

ii.) A quantifier:A quantifier specifies the quantity of specimens in the domain of discourse that satisfy an open formula. The two most common formal quantifiers are "for each" (traditionally symbolized by "∀"), and "there exists some" ("∃").For example, in arithmetic, quantifiers allow one to say that the natural numbers go on forever, by writing that "for each natural number n, there exists some natural number m that is bigger than n"; this can be written formally as "∀n∈ℕ. ∃m∈ℕ. m>n".The above English examples could be formalized as "∀p∈P. m(p)",[5] "∃p∈P. m(p)", and "¬ ∃p∈P. m(p)",[6] respectively, when P denotes the set of all people, and m(p) denotes "p is mortal".

iii.) A predicate: A predicate is an expression of one or more variables determined on some specific domain. A predicate with variables can be made a proposition by either authorizing a value to the variable or by quantifying the variable.

iv.) A term: In mathematical logic, a term denotes a mathematical object and a formula denotes a mathematical fact. In particular, terms appear as components of a formula. In Logic, a term is considered particular if it represents “at least one but not all” of the individuals composing a class.

6a). Software development Strategy;
· Build-and-fix software development model: This model is meant for small scale projects.In the build and fix model (also referred to as an ad hoc model), the software is developed without any specification or design. An initial product is built, which is then repeatedly modified until it (software) satisfies the user. That is, the software is developed and delivered to the user.This process goes on until the user feels that the software can be used productively. However, the lack of design requirements and repeated modifications result in loss of acceptability of software. Thus, software engineers are strongly discouraged from using this development approach.

This model includes the following two phases.

· Build: In this phase, the software code is developed and passed on to the next phase.

· Fix: In this phase, the code developed in the build phase is made error free. Also, in addition to the corrections to the code, the code is modified according to the user's requirements.

b.) Waterfall software development model: This is a document-driven model. However, it might not fulfill the need of the client.In a Waterfall model, each phase must be completed before the next phase can begin and there is no overlapping in the phases. The waterfall model is the earliest SDLC approach that was used for software development.In “The Waterfall” approach, the whole process of software development is divided into separate phases. The outcome of one phase acts as the input for the next phase sequentially. This means that any phase in the development process begins only if the previous phase is complete. The waterfall model is a sequential design process in which progress is seen as flowing steadily downwards (like a waterfall) through the phases of Conception, Initiation, Analysis, Design, Construction, Testing, Production/Implementation, and Maintenance.

As the Waterfall Model illustrates the software development process in a linear sequential flow; hence it is also referred to as a Linear-Sequential Life Cycle Model.

Examples of waterfall model;In the olden days, Waterfall model was used to develop enterprise applications like Customer Relationship Management (CRM) systems, Human Resource Management Systems (HRMS), Supply Chain Management Systems, Inventory Management Systems, Point of Sales (POS) systems for Retail chains etc.

c.) Rapid prototyping has long been used in the development of one-off programs, based on the familiar model of the chemical engineer’s pilot plant. More recently it has been used to prototype larger systems in two variants—the "throwaway" model and the "operational" model, which is really the incremental model to be discussed later. This development process produces a program that performs some essential or perhaps typical set of functions for the final product.A throwaway prototype approach is often used if the goal is to test the implementation method,language, or end-user acceptability. If this technology is completely viable, the prototype may become the basis of the final product development, but normally it is merely a vehicle to arrive at a completely secure functional specification.

6b.) A product requirements document (PRD) is a document containing all the requirements to a certain product. It is written to allow people to understand what a product should do. A PRD should, however, generally avoid anticipating or defining how the product will do it in order to later allow interface designers and engineers to use their expertise to provide the optimal solution to the requirements.[citation needed] PRDs are most frequently written for softwareproducts, but can be used for any type of product and also for services. Typically, a PRD is created from a user's point-of-view by a user/client or a company's marketing department (in the latter case it may also be called Marketing Requirements Document (MRD)). The requirements are then analyzed by a (potential) maker/supplier from a more technical point of view, broken down and detailed in a Functional Specification (sometimes also called Technical Requirements Document).

7a.) Introduction
1.1 Purpose

1.2 Intended Audience

1.3 Intended Use

1.4 Scope

1.5 Definitions and Acronyms

2. Overall Description

2.1 User Needs

2.2 Assumptions and Dependencies

3. System Features and Requirements

3.1 Functional Requirements

3.2 External Interface Requirements

3.3 System Features

3.4 Nonfunctional Requirements

Once you have your basic outline, you’re ready to start filling it out.

b.)1) Start With a Purpose

The introduction to your SRS is very important. It sets the expectation for the product you’re

building.So, start by defining the purpose of your product.

Intended Audience and Intended Use

Define who in your organization will have access to the SRS — and how they should use it. This may include developers, testers, and project managers. It could also include stakeholders in other departments, including leadership teams, sales, and marketing.

2)Product Scope

Describe the software being specified. And include benefits, objectives, and goals. This should relate to overall business goals, especially if teams outside of development will have access to the SRS.

Definitions and Acronyms

It’s smart to include a risk definition. Avoiding risk is top-of-mind for many developers— especially those working on safety-critical development teams.

Here’s an example. If you’re creating a medical device, the risk might be the device fails and causes a fatality.By defining that risk up front, it’s easier to determine the specific requirements you’ll need to mitigate it.

3.) Give an Overview of What You’ll Build
Your next step is to give a description of what you’re going to build. Is it an update to an existing product? Is it a new product? Is it an add-on to a product you’ve already created?.These are important to describe upfront, so everyone knows what you’re building.You should also describe why you’re building it and who it’s for.

User Needs
User needs — or user classes and characteristics — are critical. You’ll need to define who is going to use the product and how.You’ll have primary and secondary users who will use the product on a regular basis. You may also need to define the needs of a separate buyer of the product (who may not be a primary/secondary user). And, for example, if you’re building a medical device, you’ll need to describe the patient’s needs.

Assumptions and Dependencies

There might be factors that impact your ability to fulfill the requirements outlined in your SRS.What are those factors?Are there any assumptions you’re making with the SRS that could turn out to be false? You should include those here, as well.Finally, you should note if your project is dependent on any external factors. This might include software components you’re reusing from another project.

4.) Detail Your Specific Requirements
The next section is key for your development team. This is where you detail the specific requirements for building your product.

Functional Requirements

Functional requirements are essential to building your product.If you’re developing a medical device, these requirements may include infusion and battery. And within these functional requirements, you may have a subset of risks and requirements.

External Interface Requirements

External interface requirements are types of functional requirements. They’re important for embedded systems. And they outline how your product will interface with other components.

There are several types of interfaces you may have requirements for, including:

· User

· Hardware

· Software

· Communications

· System Features

System features are types of functional requirements. These are features that are required in order for a system to function.

Other Nonfunctional Requirements

Nonfunctional requirements can be just as important as functional ones.

These include:

Performance

· Safety

· Security

· Quality

The importance of this type of requirement may vary depending on your industry. Safety requirements, for example, will be critical in the medical device industry.IEEE also provides guidance for writing software requirements specifications, if you’re a member.

5. Get Approval for the SRS
Once you’ve completed the SRS, you’ll need to get it approved by key stakeholders. And everyone should be reviewing the latest version of the document.

