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PTE 519 Lecture Note 3   

3.0 Finite Difference Approximation (Model)      

In this section of the lecture material, the focus is to define the terminology and to summarize the 

basic facts. The basic idea of any approximate method is to replace the original problem by another 

problem which is easier to solve and whose solution is in some sense close to the solution of the 

original problem. A simple example is adopted from Aziz Khaled: Petroleum Reservoir Simulation, 

1979; considering the equation below: 

        
     

     -       = 0                0 < x < L        - Equation 3.1  

 

                                                               - Equation 3.2                                             

In the finite difference approach, instead of trying to find a continuous sufficiently smooth function 

(Ux) which satisfies equation 3.1, we seek only approximate values of the solution denoted by u on a 

finite set of distinct points                         inside the interval (O, L). The points      are called grid 

points (also known as mesh points or net points).     

The differential equation is replaced by a set of algebraic equation relating values     at     for all 

points. These equations are called “finite difference equations” and the differential problem is thus 

reduced to an algebraic problem. If we can show that the discrete problem is close to the original 

problem then the values     will approximate the true solution      =        at grid positions    . The 

process of obtaining finite difference equation that approximates a given differential equation is 

known as “discretisation”.        

At this stage, three types of question may be asked:          

1. How can a given differential equation be discretised 

2. How can we ascertain that the finite difference solution    is close to    in some sense and 

what is the magnitude of the difference? 

3. What is the best method of solving the resulting system of algebraic equations?  

The first two questions are discussed in this section. The third question is extremely important from 

practical point of view, and involves two steps. First, whenever the finite-difference equations are 

non-linear, they must be linearised. The second step involves the solution of the resulting matrix 

equation.  

3.1 Discretisation in Space   

Let us consider equation 3.1 with boundary conditions             

Basically, there are three methods available for discretisation of any given operator A: The Taylor 

method, the integral method and the variational method as highlighted in (Forsythe and Wasow, 

1960; Varga, 1962).  
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These correspond to differential integral and variational formulations of the conservation equation 

3.1. 

The problem to be solved is      

Instead of this, we solve        

Where L is a finite difference operator approximating the differential operator A. Generally, we write 

               Equation 3.3 where      is obtained by approximating the derivatives in the 

differential operator          is the remainder term usually referred to as truncation error.    

3.1.1 Taylor Series Method 

Let us consider a uniform grid with grid points at                               

With     = 0  ;       = L and the grid spacing h defined by  

     h =       -      = L/(N + 1)  

Now expanding        and          into Taylor series about     :       
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  +  ....    Equation 3.4  

               -   
   +   

    

 
  -   

     

 
 +   

    

  
 -   

   

   
 +   

    

   
  -  ....    Equation 3.5  

Using the above two expansions, we can derive several difference approximations for   
  and for 

  
   

Solving equation 3.1 for   
   we have;   

  
 =   

             

 
  + R{      Equation 3.6 

Where R{ = -    
    

 
  -    

     

 
     Equation 3.7 

In Equation 3.6,  
             

 
 is the forward difference approximation for the derivative   

 . This is 

obtained by assuming that R{ is small  

Similarly, re-arranging we have  

  
   

            

 
 +    

                Equation 3.8  

Where   
  =   

    

 
  -    

     

 
                  Equation 3.9 

In Equation 3.6, the term  
            

 
  is the backward difference approximation for the derivative   

  

and   
  is the local discretisation error term for the backward-difference approximation.     

The central difference approximation of    
  is obtained by subtracting 3.5 from 3.4 and re-arranging 

giving 
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 +    

                       Equation 3.10 

Where   
  =  -   

     

 
 -   

   

   
 - ......          Equation 3.11 

Here, 
              

  
  provides an approximation for   

   

So far, only the first derivative has been considered. An approximation for the second derivative is 

accomplished by adding Equations 3.5 and 3.4 and re-arranging 

  
     

                       

  
 +    

                         Equation 3.12     

Where     

  
  = -   

    

  
 -   

    

   
 - ......                             Equation 3.13      

In Equation 3.12 the term  

 

    
    = 

                       

     Equation 3.14   is the central difference approximation for       and    
  

is the corresponding remainder term.    

Equation 3.10 defines the linear operator     .  

   
     

                       

  
 +    

                            Equation 3.15 

As an example, consider the differential operator, A defined by Equation 3.14 Using the central 

difference approximation of the derivative, we have  

     
                       

   -    +    
                        Equation 3.16  

Where    =                 Comparing the above expression with equation 3.3 yields 

       
 

    
                       Equation 3.17 

      
     

Generally, it is not possible for us to obtain the exact solution      instead we solve the problem  

      
 

    
               Equation 3.18 Where     is the finite difference approximation for      

and Equation 3.18 is the finite difference approximation for Equation 3.1  
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3.2 Grid Systems  

Introduction:      

The discretization in space of the difference forms of the flow equations (such as Eqns. 1.26 to 1.28) 

in reservoir simulators requires the use of grids. In the design of grid systems for reservoir 

simulation, the following factors are critical: 

1. Resolution of geologic and petrophysical data  

2. Size of the static geologic model  

3. Limitations on the size of the reservoir flow model 

4. Potential uses of the reservoir model     

5. Upscaling (also termed upgridding or scaleup) techniques to convert the static geologic 

model into a reservoir flow model 

In the subsequent section of this lecture material, different types of grid systems and their potential 

effects on reservoir simulation results are highlighted. 

3.2.1 Cartesian Grids:   

According to Nnaemeka Ezekwe, the most common type of grid system used in reservoir simulation 

are based on Cartesian coordinates of x, y and z. Cartesian grids can be based on a block-centred grid 

or point-distributed grid systems. The block-centred grid is better for calculating mass accumulation 

terms in the flow equations, while the point distributed grid is more accurate for calculating flows 

between the gridblocks. The differences between the two grid systems (block centred vs point-

distributed) are insignificant, if the Cartesian grid systems are uniform. Most commercial simulators 

use block centred grids. Cartesian grid systems can be classified as one-dimensional (1D), two-

dimensional (2D), and three dimensional (3D). Figure 3.2 shows a 1D grid system in the x-direction. 

Figure 3.3 shows a 2D grid system for an areal model (x, y), and a cross-sectional model (x, z).  

 

         

                   

 

 

 

 

  

 

Fig. 3.0 Block-centred Grid      
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Fig. 3.1: Point-distributed Grid               

 

 

 

                                                                                                                                                                         

 

 

Fig. 3.2:  1 D Grid Model  

 

 

 

 

 

 

 

Fig. 3.3: 2D Grid Model                                                                                                                                   
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The discretization in space of the simulator flow equations assumes that the gridblocks are 

orthogonal. This means that each column of grid blocks is at right angles to each row of grid-blocks. 

In designing a Cartesian grid system for reservoir simulation, it is important to maintain the 

gridblocks orthogonal to each other, otherwise the results from the simulation may not be accurate 

if the gridblocks are severely non-orthogonal. Most commercial incorporate features to ensure 

orthogonality of the gridblocks for irregular grid systems, especially if the static geologic model is 

intended to be used in reservoir simulation.      

3.2.2 Radial Grids: 

Grid systems are also based on radial coordinates of r,  , and z. An example of a grid system based 

on radial coordinates is shown in Fig. 3.4. Radial grid systems are used mainly in the representation 

of wells in models that show rapid changes in fluid saturations near the well bore as in gas cusping or 

water coning studies. In some applications, the wells are represented with radial grids while the 

remaining parts of the reservoir have Cartesian grids, thereby creating a hybrid grid system.      

 

 

 

 

 

 

 

 

 

Fig. 3.4: Radial grid model     

 

3.2.3 Corner-Point Geometry: 

Corner-point geometry is based on specifying the locations of all the eight corners of each grid block 

as shown in Fig. 2.5. This gridding system is useful for representing complex geologic geometries 

such as faults, permeability barriers, irregular boundaries, sand channels etc. However, they could 

generate highly irregular grids that may not be orthogonal. As pointed out earlier, non-orthogonal 

grids, especially from corner-point geometry, could yield erroneous flow simulation results. 

     

                                                                                                      Fig. 3.5: Grid block corner point   
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3.2.4 Local Grid Refinement (LGR) 

Local grid refinement (LGR) is a technique used to increase the grid density in regions of the 

reservoir where rapid changes in saturations and pressures are occurring so as to represent those 

changes more accurately. LGR are used mainly around well locations or to monitor saturation 

changes at fluid boundaries. An example of LGR around well locations is shown in Figure 3.6 for 

Cartesian grids. LGR should be used with caution due to two main potentially adverse consequences 

from indiscriminate application of the technique. The first adverse result of LGR is fluid flow 

between a large grid block and a small grid block in an LGR area, which could cause large oscillations 

in computed results. The second adverse effect is a significant increase in model run times, if many 

LGRs are present in a flow simulation model. A reverse form of LGR is Grid coarsening. Grid 

coarsening involves reduction of the number of grid blocks in portions of the reservoir that do not 

have rapid changes in saturation or pressures, such as in acquifers surrounding the hydrocarbon 

portions of the reservoir (Fig. 3.7) Grid coarsening is beneficial in terms of reducing computation and 

storage memory required for a given flow simulation model.     

                                                                                                                                 

 

 

 

 

 

 

Fig. 3.6: Local grid refinement 

                                                                                                                                                

 

 

 

 

 

 

Fig. 3.7: Grid coarsening 
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3.3 Timesteps: 

The difference equations resulting from the discretization in time of the flow equations in reservoir 

simulators are solved in a number of timesteps. Timesteps are progressive increments of time used 

to advance simulation of the process from initial time to the stated end time. As the solution 

progresses in time, the selection of time step sizes plays a very important role in ensuring that 

solutions of the difference equations are accurate, efficient and stable. Most commercial simulators 

feature sophisticated automatic timestep control that is based on pre-determined set of default 

parameters and tolerances. For many simulator applications, these automatic times step selection 

criteria are adequate and need no further adjustments. However, for specialized simulator 

applications, the user may prefer to use manual timestep control. The procedure for implementing 

manual timestep control is typically provided in the technical documentation of the commercial 

simulator.  

Simulator timestep sizes are influenced by simulator startup, timing of input and output of data, and 

large changes in reservoir pressures, production rates and injection rates. At startup, the timestep 

size for most commercial simulators is automatically set at about 1 day or less depending on the 

application. As the simulation progress and the solution stabilize, large time steps are taken, 

depending on other controls applied on the simulator. One of such controls applied on the simulator 

is data input and output. Most simulators adjust their timestep sizes as necessary to precisely 

comply with data input and/or output specified by time (or date). Frequent data input or output 

could slow down the simulator and increase run times thereby increasing computation costs. Lareg 

changes in pressures, production rates, and injection rates may also cause reduction in timestep 

sizes. One technique that could be used to avoid sudden large changes in reservoir conditions 

(pressures, saturations, etc) is to incorporate additional times (or dates) for data input so as to 

“smooth-out” or reduce the impact of the large changes on the progress of the simulation.  

Except for experienced users of commercial simulators, it is recommended that automatic time step 

selection should be used as provided in commercial simulators. In general, automatic timestep 

control in commercial simulators will yield reduced run times and computation costs.  

3.4 History Matching 

History matching is the process of adjusting the properties and parameters of the reservoir model to 

match past actual performance data measured on the reservoir. The performance data may include 

pressure data such as (static bottomhole pressures, flowing bottomhole pressures, tubing head 

pressures, average reservoir pressures, etc), production and injection data (such as oil, water and 

gas production rates and water and gas injection rates), well completion data (such as perforated 

and isolated intervals), production and injection profile data from (production logs and injection 

logs), etc. A large variety of performance data can be used in history matching process. What is 

important is to note is the reservoir type, and the methods being used to deplete or improve 

production from the reservoir. The history matching process is a classical example of an inverse 

problem which leads to a non-unique solution or response. This implies that different history 

matched models of a reservoir can be achieved by applying the same input data. The history 

matched models are non-unique solutions to the applied performance data and may yield different 

predictions of the future performance of the reservoir.        
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The process of history matching a reservoir model varies from one practitioner to the other, and 

depends largely on experience and knowledge of reservoir engineering principles. The history 

matching matching process also depends considerably on the reservoir model type, the quality and 

quantity of available performance data, and the objectives of the study. For instance, if the reservoir 

model was constructed from sparse data and limited performance data available, it is reasonable to 

expect that history matched model is likely to be limited in its application on the prediction of the 

future performance of the reservoir.  

Generally, the history matching process can be divided into two phases, namely the pressure match 

phase and the saturation match phase. During the pressure match phase, the history matching 

process is focussed on matching the net voidage (in reservoir barrels) from the reservoir with the 

aim of matching pressure distribution in the reservoir over the specified time period. In some cases, 

only a match of the trend in pressure distribution can be achieved during the pressure match phase. 

The main goal of the pressure match phase is to obtain a reservoir model that has approximately the 

appropriate net volume of fluids in place over the duration of its known history. During the pressure 

match phase, minimal effort is applied in the validation of the distribution of the phases or 

saturations in the model. At the end of the pressure match phase, the history matching process 

proceeds to the saturation match phase. During the saturation match phase, attention is directed 

towards specifying the actual phases of fluids produced and/or injected into the reservoir. For 

instance, in history matching black oil reservoir models, oil production rates are typically specified 

and the model yields the corresponding water and gas production rates. The water and gas 

production rates generated from the model are then compared with the actual water and gas 

production rates. Also, pressures and other performance data generated from the model are 

compared with actual data. Different forms of the actual data may be used for this comparison 

during the process of history matching. Some practitioners use production rates, cumulative 

production volumes, producing gas-oil ratios and water-oil ratios, flowing bottomhole pressures, 

tubing head pressures, average reservoir pressures, etc The matching of data predicted to the actual 

can be done at the level of the field, well groups, or individual well. Again the choice of actual data 

to match depends on the quality and quantity of data and the objectives of the simulation study. At 

the end, saturation match phase generally produces a history matched model with appropriate 

distribution of pressures and saturations in the reservoir. Generally, the history matching process is 

terminated at the point where the team engaged in the process decides that an acceptable history 

matched model has been obtained. History matched models are ruled to be acceptable, if they are 

adequate to meet the objectives of the simulation study, and further adjustments to the models do 

not result in significant changes on the history matched variables.  

The following best practices are recommended to enhance the efficiency and effectiveness of history 

matching process: 

1.) Make a log of all activities and changes made to the model during the history matching 

process. 

2.) The changes made on the model during history matching should be sequential/graduated 

and systematic. 

3.) The results from the previous changes or adjustments to the model should be analysed and 

understood before proceeding with the next set of changes or adjustments 

4.) The least reliable input data should be modified first during the history match process    
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5.) Recognition of the point in the history matching process when further changes on the input 

data cause insignificant improvement on the state of the history matched model is 

important.         
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