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Chapter 1

Fundamentals of Signals

1.1 What is a Signal?

A signal is a quantitative description of a physical phenomenon, event or process.
Some common examples include:

1. Electrical current or voltage in a circuit.

2. Daily closing value of a share of stock last week.

3. Audio signal: continuous-time in its original form, or discrete-time when stored
on a CD.

More precisely, a signal is a function, usually of one variable in time. However, in
general, signals can be functions of more than one variable, e.g., image signals.

In this class we are interested in two types of signals:

1. Continuous-time signal x(t), where t is a real-valued variable denoting time,
i.e., t ∈ R. We use parenthesis (·) to denote a continuous-time signal.

2. Discrete-time signal x[n], where n is an integer-valued variable denoting the
discrete samples of time, i.e., n ∈ Z. We use square brackets [·] to denote a
discrete-time signal. Under the definition of a discrete-time signal, x[1.5] is not
defined, for example.
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1.2 Review on Complex Numbers

We are interested in the general complex signals:

x(t) ∈ C and x[n] ∈ C,

where the set of complex numbers is defined as

C = {z | z = x+ jy, x, y ∈ R, j =
√
−1.}

A complex number z can be represented in Cartesian form as

z = x+ jy,

or in polar form as
z = rejθ.

Theorem 1. Euler’s Formula

ejθ = cos θ + j sin θ. (1.1)

Using Euler’s formula, the relation between x, y, r, and θ is given by{
x = r cos θ

y = r sin θ
and

{
r =

√
x2 + y2,

θ = tan−1 y
x
.

Figure 1.1: A complex number z can be expressed in its Cartesian form z = x+ jy, or in its polar
form z = rejθ.
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A complex number can be drawn on the complex plane as shown in Fig. 1.1. The
y-axis of the complex plane is known as the imaginary axis, and the x-axis of the
complex plane is known as the real axis. A complex number is uniquely defined by
z = x+ jy in the Cartesian form, or z = rejθ in the polar form.

Example. Convert the following complex numbers from Cartesian form to polar
form: (a) 1 + 2j; (b) 1− j.

For (a), we apply Euler’s formula and find that

r =
√

12 + 22 =
√

5, and θ = tan−1

(
2

1

)
≈ 63.64◦.

Therefore,
1 + 2j =

√
5ej63.64◦ .

For (b), we apply Euler’s formula again and find that

r =
√

12 + (−1)2 =
√

2, and θ = tan−1

(
−1

1

)
= −45◦.

Therefore,
1− j =

√
2e−jπ/4.

Recall that: π in radian = 180◦ in degree.

Example. Calculate the value of jj.
jj = (ejπ/2)j = e−π/2 ≈ 0.2078.

1.3 Basic Operations of Signals

1.3.1 Time Shift

For any t0 ∈ R and n0 ∈ Z, time shift is an operation defined as

x(t) −→ x(t− t0)
x[n] −→ x[n− n0].

(1.2)

If t0 > 0, the time shift is known as “delay”. If t0 < 0, the time shift is known as
“advance”.

Example. In Fig. 1.2, the left image shows a continuous-time signal x(t). A time-
shifted version x(t− 2) is shown in the right image.



8 CHAPTER 1. FUNDAMENTALS OF SIGNALS

Figure 1.2: An example of time shift.

1.3.2 Time Reversal

Time reversal is defined as
x(t) −→ x(−t)
x[n] −→ x[−n],

(1.3)

which can be interpreted as the “flip over the y-axis”.

Example.

Figure 1.3: An example of time reversal.

1.3.3 Time Scaling

Time scaling is the operation where the time variable t is multiplied by a constant a:

x(t) −→ x(at), a > 0 (1.4)

If a > 1, the time scale of the resultant signal is “decimated” (speed up). If 0 < a < 1,
the time scale of the resultant signal is “expanded” (slowed down).

1.3.4 Combination of Operations

In general, linear operation (in time) on a signal x(t) can be expressed as y(t) = x(at−
b), a, b ∈ R. There are two methods to describe the output signal y(t) = x(at− b).
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Figure 1.4: An example of time scaling.

Method A: “Shift, then Scale” (Recommended)

1. Define v(t) = x(t− b),

2. Define y(t) = v(at) = x(at− b).

Method B: “Scale, then Shift”

1. Define v(t) = x(at),

2. Define y(t) = v(t− b
a
) = x(at− b).

Example.
For the signal x(t) shown in Fig. 1.5, sketch x(3t− 5).

Figure 1.5: Example 1. x(3t− 5).

Example.
For the signal x(t) shown in Fig. 1.6, sketch x(1− t).
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Figure 1.6: Example 2. x(−t+ 1).

Figure 1.7: Decimation and expansion.

1.3.5 Decimation and Expansion

Decimation and expansion are standard discrete-time signal processing operations.

Decimation.

Decimation is defined as

yD[n] = x[Mn], (1.5)

for some integers M . M is called the decimation factor.

Expansion.

Expansion is defined as

yE[n] =

{
x
[
n
L

]
, n = integer multiple of L

0, otherwise.
(1.6)

L is called the expansion factor.
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Figure 1.8: Examples of decimation and expansion for M = 2 and L = 2.

1.4 Periodicity

1.4.1 Definitions

Definition 1. A continuous time signal x(t) is periodic if there is a constant T > 0
such that

x(t) = x(t+ T ), (1.7)

for all t ∈ R.

Definition 2. A discrete time signal x[n] is periodic if there is an integer constant
N > 0 such that

x[n] = x[n+N ], (1.8)

for all n ∈ Z.

Signals do not satisfy the periodicity conditions are called aperiodic signals.

Example. Consider the signal x(t) = sin(ω0t), ω0 > 0. It can be shown that
x(t) = x(t+ T ), where T = k 2π

ω0
for any k ∈ Z+:

x(t+ T ) = sin

(
ω0

(
t+ k

2π

ω0

))
= sin (ω0t+ 2πk)

= sin(ω0t) = x(t).

Therefore, x(t) is a periodic signal.
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Definition 3. T0 is called the fundamental period of x(t) if it is the smallest value
of T > 0 satisfying the periodicity condition. The number ω0 = 2π

T0
is called the

fundamental frequency of x(t).

Definition 4. N0 is called the fundamental period of x[n] if it is the smallest value
of N > 0 where N ∈ Z satisfying the periodicity condition. The number Ω0 = 2π

N0
is

called the fundamental frequency of x[n].

Example. Determine the fundamental period of the following signals: (a) ej3πt/5;
(b) ej3πn/5.
For (a), we let x(t) = ej3πt/5. If x(t) is a periodic signal, then there exists T > 0 such
that x(t) = x(t+ T ). Therefore,

x(t) = x(t+ T )

⇒ ej
3π
5
t = ej

3π
5

(t+T )

⇒ 1 = ej
3π
5
T

⇒ ej2kπ = ej
3π
5
T , for somek ∈ Z+.

⇒ T = 10
3
. (k = 1)

For (b), we let x[n] = ej3πn/5. If x[n] is a periodic signal, then there exists an integer
N > 0 such that x[n] = x[n+N ]. So,

x[n] = x[n+N ]

⇒ ej
3π
5
n = ej

3π
5

(n+N)

⇒ ej2kπ = ej
3π
5
N , for somek ∈ Z+

⇒ N = 10k
3

⇒ N = 10. (k = 3).

1.4.2 A More Difficult Example

Consider the following two signals

x(t) = cos

(
πt2

8

)
,

x[n] = cos

(
πn2

8

)
.

We will show that x(t) is aperiodic whereas x[n] is periodic with fundamental period
N0 = 8.
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(a) cos
(
πt2

8

)
(b) cos

(
πn2

8

)
Figure 1.9: Difference between x(t) = cos

(
πt2

8

)
and x[n] = cos

(
πn2

8

)
. Note that x(t) is aperiodic,

whereas x[n] is periodic.

Fig. 1.9 plots the signals

x(t) = cos

(
πt2

8

)
for −8 ≤ t ≤ 8 and

x[n] = cos

(
πn2

8

)
for n = −8,−7, . . . , 8. It is clear that x(t) is aperiodic, since the values of t > 0 for
which x(t) = 0 form a sequence which the difference between consecutive elements is
monotonically decreasing.

On the other hand, x[n] is periodic, with fundamental period N0 = 8. To see this,
consider the periodicity condition x[n] = x[n+N ], which becomes:

cos
(
π(n+N)2/8

)
= cos

(
πn2/8

)
,

for all n ∈ Z. This means

π(n+N)2

8
=
πn2

8
+ 2πk,

for some k ∈ Z, where k may depend on a particular time instant n. We can simplify
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this condition by dividing both sides of the equation by π/8 to yield

(n+N)2 = n2 +
8

π
(2πk),

or

n2 + 2nN +N2 = n2 + 16k,

implying

2nN +N2 = 16k,

for some k ∈ Z. Next, we want to find an N such that 2nN + N2 is divisible by 16
for all n ∈ Z. Now we claim: N = 8 satisfies this condition, and no smaller N > 0
does.

Setting N = 8, we get

2nN +N2 = 16n+ 64,

which, for any n ∈ Z, is clearly divisible by 16. So N = 8 is a period of x[n]. You can
check directly that, for any 1 ≤ N < 8, there is a value n ∈ Z such that 2nN +N2 is
not divisible by 16. For example if we consider N = 4, we get

2nN +N2 = 8n+ 16,

which, for n = 1, is not divisible by 16. So N = 4 is not a period of x[n].

1.4.3 Periodicity and Scaling

1. Suppose x(t) is periodic, and let a > 0. Is y(t) = x(at) periodic?
Yes, and if T0 is the fundamental period of x(t), then T0/a is the fundamental
period of y(t).

2. Suppose x[n] is periodic, and let m ∈ Z+. Is y[n] = x[mn] periodic?
Yes, and if N0 is the fundamental period of x[n], then the fundamental period
N of y[n] is the smallest positive integer such that mN is divisible by N0, i.e.

mN ≡ 0 ( mod N0).

Example 1: N0 = 8, m = 2, then N = 4.
Example 2: N0 = 6, m = 4, then N = 3.
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1.5 Even and Odd Signals

1.5.1 Definitions

Definition 5. A continuous-time signal x(t) is even if

x(−t) = x(t) (1.9)

and it is odd if

x(−t) = −x(t). (1.10)

Definition 6. A discrete-time signal x[n] is even if

x[−n] = x[n] (1.11)

and odd if

x[−n] = −x[n]. (1.12)

Remark: The all-zero signal is both even and odd. Any other signal cannot be both
even and odd, but may be neither. The following simple example illustrate these
properties.

Example 1: x(t) = t2 − 40 is even.

Example 2: x(t) = 0.1t3 is odd.

Example 3: x(t) = e0.4t is neither even nor odd.

(a) x(t) = t2 − 40 (b) x(t) = 0.1t3 (c) x(t) = e0.4t

Figure 1.10: Illustrations of odd and even functions. (a) Even; (b) Odd; (c) Neither.
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1.5.2 Decomposition Theorem

Theorem 2. Every continuous-time signal x(t) can be expressed as:

x(t) = y(t) + z(t),

where y(t) is even, and z(t) is odd.

Proof. Define

y(t) =
x(t) + x(−t)

2

and

z(t) =
x(t)− x(−t)

2
.

Clearly y(−t) = y(t) and z(−t) = −z(t). We can also check that x(t) = y(t)+z(t).

Terminology: The signal y(t) is called the even part of x(t), denoted by Ev{x(t)}.
The signal z(t) is called the odd part of x(t), denoted by Odd{x(t)}.

Example: Let us consider the signal x(t) = et.

Ev{x(t)} =
et + e−t

2
= cosh(t).

Odd{x(t)} =
et − e−t

2
= sinh(t).

Similarly, we can define even and odd parts of a discrete-time signal x[n]:

Ev{x[n]} =
x[n] + x[−n]

2

Odd{x[n]} =
x[n]− x[−n]

2
.

It is easy to check that
x[n] = Ev{x[n]}+Odd{x[n]}

Theorem 3. The decomposition is unique, i.e., if

x[n] = y[n] + z[n],

then y[n] is even and z[n] is odd if and only if y[n] = Ev{x[n]} and z[n] = Odd{x[n]}.
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Proof. If y[n] is even and z[n] is odd, then

x[−n] = y[−n] + z[−n] = y[n]− z[n].

Therefore,

x[n] + x[−n] = (y[n] + z[n]) + (y[n]− z[n]) = 2y[n],

implying y[n] = x[n]+x[−n]
2

= Ev{x[n]}. Similarly z[n] = x[n]−x[−n]
2

= Odd{x[n]}.

The converse is trivial by definition, as Ev{x[n]} must be even and Odd{x[n]} must
be odd.

1.6 Impulse and Step Functions

1.6.1 Discrete-time Impulse and Step Functions

Definition 7. The discrete-time unit impulse signal δ[n] is defined as

δ[n] =

{
1, n = 0,

0, n 6= 0.
(1.13)

Definition 8. The discrete-time unit step signal δ[n] is defined as

u[n] =

{
1, n ≥ 0,

0, n < 0.
(1.14)

It can be shown that

• δ[n] = u[n]− u[n− 1]

• u[n] =
∞∑
k=0

δ[n− k]

• u[n] =
∞∑

k=−∞

u[k]δ[n− k].
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(a) δ[n] (b) u[n]

Figure 1.11: Definitions of impulse function and a step function.

1.6.2 Property of δ[n]

Sampling Property
By the definition of δ[n], δ[n− n0] = 1 if n = n0, and 0 otherwise. Therefore,

x[n]δ[n− n0] =

{
x[n], n = n0

0, n 6= n0

= x[n0]δ[n− n0]. (1.15)

As a special case when n0 = 0, we have x[n]δ[n] = x[0]δ[n]. Pictorially, when a signal
x[n] is multiplied with δ[n], the output is a unit impulse with amplitude x[0].

Figure 1.12: Illustration of x[n]δ[n] = x[0]δ[n].
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Shifting Property

Since x[n]δ[n] = x[0]δ[n] and
∞∑

n=−∞
δ[n] = 1, we have

∞∑
n=−∞

x[n]δ[n] =
∞∑

n=−∞

x[0]δ[n] = x[0]
∞∑

n=−∞

δ[n] = x[0],

and similarly

∞∑
n=−∞

x[n]δ[n− n0] =
∞∑

n=−∞

x[n0]δ[n− n0] = x[n0]. (1.16)

In general, the following result holds:

b∑
n=a

x[n]δ[n− n0] =

{
x[n0], if n0 ∈ [a, b]

0, if n0 6∈ [a, b]
(1.17)

Representation Property
Using the sampling property, it holds that

x[k]δ[n− k] = x[n]δ[n− k].

Summing the both sides over the index k yields

∞∑
k=−∞

x[k]δ[n− k] =
∞∑

k=−∞

x[n]δ[n− k] = x[n]
∞∑

k=−∞

δ[n− k] = x[n].

This result shows that every discrete-time signal x[n] can be represented as a linear
combination of shifted unit impulses

x[n] =
∞∑

k=−∞

x[k]δ[n− k]. (1.18)

For example, the unit step function can be expressed as

u[n] =
∞∑

k=−∞

u[k]δ[n− k].

Why do we use these complicated representation of x[n]? Because, when we consider
linear time-invariant systems (Chapter 2), it will allow us to determine the system
response to any signal x[n] from the impulse response.
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Figure 1.13: Representing of a signal x[n] using a train of impulses δ[n− k].

1.6.3 Continuous-time Impulse and Step Functions

Definition 9. The dirac delta function is defined as

δ(t) =

{
0, if t 6= 0

∞, if t = 0
,

where ∫ ∞
−∞

δ(t)dt = 1.

Definition 10. The unit step function is defined as

u(t) =

{
0, t < 0

1, t ≥ 0.

1.6.4 Property of δ(t)

The properties of δ(t) are analogous to the discrete-time case.
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Sampling Property

x(t)δ(t) = x(0)δ(t). (1.19)

To see this, note that x(t)δ(t) = x(0) when t = 0 and x(t)δ(t) = 0 when t 6= 0.
Similarly, we have

x(t)δ(t− t0) = x(t0)δ(t− t0), (1.20)

for any t0 ∈ R.

Shifting Property
The shifting property follows from the sampling property. Integrating x(t)δ(t) yields∫ ∞

−∞
x(t)δ(t)dt =

∫ ∞
−∞

x(0)δ(t)dt = x(0)

∫ ∞
−∞

δ(t)dt = x(0). (1.21)

Similarly, one can show that∫ ∞
−∞

x(t)δ(t− t0)dt = x(t0) (1.22)

Representation Property
The representation property is also analogous to the discrete-time case:

x(t) =

∫ ∞
−∞

x(τ)δ(t− τ)dτ, (1.23)

where the special case of u(t) is given by

u(t) =

∫ ∞
−∞

u(τ)δ(t− τ)dτ.

As an example of the properties, let us consider d
dt
u(t).

u(t) =

∫ ∞
−∞

u(τ)δ(t− τ)dτ, (representation property)

=

∫ ∞
0

δ(t− τ)dτ, because u(τ) = 0 if τ ≤ 0

=

∫ t

−∞
δ(σ)dσ, let σ = t− τ.

Then by fundamental theorem of calculus, we have

d

dt
u(t) =

d

dt

∫ t

−∞
δ(σ)dσ = δ(t). (1.24)
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1.7 Continuous-time Complex Exponential Func-

tions

Definition 11. A complex exponential function is defined as

x(t) = Ceat, where C, a ∈ C (1.25)

1.7.1 Real-valued Exponential

We first consider the case of real-valued exponential functions, i.e., C ∈ R and a ∈ R.

(a) x(t) = 1
2e

− 1
2 t (b) x(t) = 1

2e
1
2 t

Figure 1.14: Real exponential functions.

When a = 0, then x(t) = C, which is a constant function.

1.7.2 Periodic Complex Exponential

Let us consider the case where a is purely imaginary, i.e., a = jω0, ω0 ∈ R. Since C
is a complex number, we have

C = Aejθ,

where A, θ ∈ R. Consequently,

x(t) = Cejω0t = Aejθejω0t

= Aej(ω0t+θ) = A cos(ω0t+ θ) + jA sin(ω0t+ θ).
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The real and imaginary parts of x(t) are given by

Re{x(t)} = A cos(ω0t+ θ)

Im{x(t)} = A sin(ω0t+ θ).

We can think of x(t) as a pair of sinusoidal signals of the same amplitude A, ω0 and
phase shift θ with one a cosine and the other a sine.

(a) Re{Cejω0t} (b) Im{Cejω0t}

Figure 1.15: Periodic complex exponential function x(t) = Cejω0t (C = 1, ω0 = 2π).

Claims. x(t) = Cejω0t is periodic with

1. fundamental period: T0 = 2π
|ω0| .

2. fundamental frequency: |ω0|.

The second claim is the immediate result from the first claim. To show the first claim,
we need to show x(t+T0) = x(t) and no smaller T0 can satisfy the periodicity criteria.

x(t+ T0) = Ce
jω0(t+ 2π

|ω0|
)

= Cejω0te±j2π

= Cejω0t = x(t).

It is easy to show that T0 is the smallest period!
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1.7.3 General Complex Exponential

In the general setting, we have C = Aejθ where A, θ ∈ R and a = r + jω0 where
r, ω0 ∈ R. Therefore,

x(t) =
(
Aejr

)
e(r+jω0)t = Aertej(ω0t+θ).

Rewrite this in the rectangular form:

x(t) = Aert cos(ω0t+ θ) + jAert sin(ω0t+ θ)

(a) Re{Aertejω0t} (b) Im{Aertejω0t}

Figure 1.16: Periodic complex exponential function x(t) = Aertejω0t (A = 1, r = −1/2, ω0 = 2π).

1.8 Discrete-time Complex Exponentials

1.8.1 Definitions

A discrete-time complex exponential function has the form:

x[n] = Ceβn,

where C, β ∈ C. Letting α = eβ gives

x[n] = Cαn.

In the following subsections, we shall study the behavior of x[n] for difference cases
of C and α.
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1.8.2 Real-valued Complex Exponential

x[n] is a real-valued complex exponential when C ∈ R and α ∈ R. In this case,
x[n] = Cαn is a monotonic decreasing function when 0 < α < 1, and is a monotonic
increasing function when α > 1.

1.8.3 Complex-valued Complex Exponential

x[n] is a complex-valued complex exponential when C, α ∈ C. In this case, C and α
can be written as C = |C|ejθ, and α = |α|ejΩ0 . Consequently,

x[n] = Cαn = |C|ejθ
(
|α|ejΩ0

)n
= |C||α|nej(Ω0n+θ)

= |C||α|n cos(Ω0n+ θ) + j|C||α|n sin(Ω0n+ θ).

Three cases can be considered here:

1. When |α| = 1, then x[n] = |C| cos(Ω0n + θ) + j|C| sin(Ω0n + θ) and it has
sinusoidal real and imaginary parts (not necessarily periodic, though).

2. When |α| > 1, then |α|n is a growing exponential, so the real and imaginary
parts of x[n] are the product of this with sinusoids.

3. When |α| < 1, then the real and imaginary parts of x[n] are sinusoids sealed by
a decaying exponential.

1.8.4 Periodic Complex Exponentials

Consider x[n] = CejΩ0n, Ω0 ∈ R. We want to study the condition for x[n] to be
periodic. The periodicity condition requires that, for some N > 0,

x[n+N ] = x[n], ∀n ∈ Z.

Since x[n] = CejΩ0n, it holds that

ejΩ0(n+N) = ejΩ0nejΩ0N = ejΩ0n, ∀n ∈ Z.

This is equivalent to

ejΩ0N = 1 or Ω0N = 2πm, for some m ∈ Z.
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Therefore, the condition for periodicity of x[n] is

Ω0 =
2πm

N
, for some m ∈ Z, and some N > 0, N ∈ Z.

Thus x[n] = ejΩ0n is periodic if and only if Ω0 is a rational multiple of 2π. The
fundamental period is

N =
2πm

Ω0

,

where we assume that m and N are relatively prime, gcd(m,n) = 1, i.e., m
N

is in
reduced form.

1.8.5 Periodicity in Frequency

Suppose that x[n] = ejΩ0n, where Ω0 ∈ R. If we increase Ω0 by 2π, we find

x1[n] = ej(Ω0+2π)n = ejΩ0nej2πn.

But n ∈ Z, so ej2πn = 1, and we see that

x1[n] = ejΩ0n = x[n].

More generally, for any k ∈ Z, we have

xk[n] = ej(Ω0+2πk)n = ejΩ0n = x[n].

This means that we can limit the range of values of Ω0 to any real interval of length 2π.
The periodicity in frequency applies, of course, to the periodic complex exponential
signals, so we have a different notion of low and high frequencies in the discrete-time
setting.



Chapter 2

Fundamentals of Systems

A system is a quantitative description of a physical process which transforms signals
(at its “input”) to signals (at its “output”). More precisely, a system is a “black
box” (viewed as a mathematical abstraction) that deterministically transforms input
signals into output signals. In this chapter, we will study the properties of systems.

Figure 2.1: Continuous-time and discrete-time systems.

Remarks:

1. We will consider both continuous-time systems and discrete-time systems. The
transformation from a continuous-time signal x(t) to a discrete-time signal x[n]
will be discussed in Chatper 6.

2. We will focus on single-input single-output systems. Multiple-inputs to multiple-
outputs (MIMO) systems are outside the scope of this course.

27
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2.1 System Properties

2.1.1 Memoryless

Definition 12. A system is memoryless if the output at time t (or n) depends only
on the input at time t (or n).

Examples.

1. y(t) = (2x(t)−x2(t))2 is memoryless, because y(t) depends on x(t) only. There
is no x(t− 1), or x(t+ 1) terms, for example.

2. y[n] = x[n] is memoryless. In fact, this system is passing the input to output
directly, without any processing.

3. y[n] = x[n− 1] is not memoryless, because the n-th output depends on n− 1-th
input.

4. y[n] = x[n] + y[n− 1] is not memoryless. To see this, we consider

y[n− 1] = x[n− 1] + y[n− 2].

Substituting into y[n] = x[n] + y[n− 1] yields

y[n] = x[n] + (x[n− 1] + y[n− 2]).

By repeating the calculation, we have

y[n] = x[n] + x[n− 1] + x[n− 2] + . . .

=
n∑

k=−∞

x[k].

Clearly, y[n] depends on more than just x[n].

2.1.2 Invertible

Definition 13. A system is invertible if distinct input signals produce distinct output
signals.

In other words, a system if invertible if there exists an one-to-one mapping from the
set of input signals to the set of output signals.

There are two basic rules of showing an invertible system:
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1. To show that a system is invertible, one has to show the inversion formula.

2. To show that a system is not invertible, one has to give a counter example.

Example 1.
The system y(t) = (cos(t) + 2)x(t) is invertible.

Proof. To show that the system is invertible, we need to find an inversion formula.
This is easy: y(t) = (cos(t) + 2)x(t) implies that (by rearranging terms)

x(t) =
y(t)

cos(t) + 2
,

which is the inversion formula. Note that the denominator is always positive, thus
the division is valid.

Example 2.
The system y[n] = x[n] + y[n− 1] is invertible.

Proof. y[n] = x[n] + y[n− 1] implies that (by rearranging terms)

x[n] = y[n]− y[n− 1].

This is the inversion formula.

Example 3.
The system y(t) = x2(t) is not invertible.

Proof. To show that a system is not invertible, we construct a counter example. Let
us consider two signals

x1(t) = 1, ∀t
x2(t) = −1, ∀t.

Clearly x1(t) 6= x2(t), but (x1(t))2 = (x2(t))2. Therefore, we have found a counter
example such that different inputs give the same output. Hence the system is not
invertible.
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2.1.3 Causal

Definition 14. A system is causal if the output at time t (or n) depends only on
inputs at time s ≤ t (i.e., the present and past).

Examples.

1. y[n] = x[n− 1] is causal, because y[n] depends on the past sample x[n− 1].

2. y[n] = x[n] + x[n+ 1] is not causal, because x[n+ 1] is a future sample.

3. y(t) =
∫ t
−∞ x(τ)dτ is causal, because the integral evaluates τ from −∞ to t

(which are all in the past).

4. y[n] = x[−n] is not causal, because y[−1] = x[1], which means the output at
n = −1 depends an input in the future.

5. y(t) = x(t) cos(t+ 1) causal (and memoryless), because cos(t+ 1) is a constant
with respect to x(t).

2.1.4 Stable

To describe a stable system, we first need to define the boundedness of a signal.

Definition 15. A signal x(t) (and x[n]) is bounded if there exists a constant B <∞
such that |x(t)| < B for all t.

Definition 16. A system is stable if a bounded input input always produces a bounded
output signal. That is, if |x(t)| ≤ B for some B <∞, then

|y(t)| <∞.

Example 1.
The system y(t) = 2x2(t− 1) + x(3t) is stable.

Proof. To show the system is stable, let us consider a bounded signal x(t), that is,
|x(t)| ≤ B for some B <∞. Then

|y(t)| = |2x2(t− 1) + x(3t)|
≤ |2x2(t− 1)|+ |x(3t)| , by Triangle Inequality

≤ 2|x2(t− 1)|+ |x(3t)|
≤ 2B2 +B <∞.

Therefore, for any bounded input x(t), the output y(t) is always bounded. Hence the
system is stable.
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Example 2.

The system y[n] =
n∑

k=−∞
x[k] is not stable.

Proof. To show that the system y[n] =
∑n

k=−∞ x[k] is not stable, we can construct a
bounded input signal x[n] and show that the output signal y[n] is not bounded.

Let x[n] = u[n]. It is clear that |x[n]| ≤ 1 (i.e., bounded). Consequently,

|y[n]| =

∣∣∣∣∣
n∑

k=−∞

u[k]

∣∣∣∣∣
=

n∑
k=0

u[k]

≤
n∑
k=0

1 = n+ 1,

which approaches ∞ as n→∞. Therefore, |y[n]| is not bounded.

2.1.5 Time-invariant

Definition 17. A system is time-invariant if a time-shift of the input signal results
in the same time-shift of the output signal. That is, if

x(t) −→ y(t),

then the system is time-invariant if

x(t− t0) −→ y(t− t0),

for any t0 ∈ R.

Fig. 2.2 illustrates an interpretation of a time-invariant system: If a signal x(t) is
input to a time-invariant system and get an output y(t), then the input x(t− t0) will
result an output y(t− t0).

Example 1.
The system y(t) = sin[x(t)] is time-invariant.
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Figure 2.2: Illustration of a time-invariant system.

Proof. Let us consider a time-shifted signal x1(t) = x(t − t0). Correspondingly, we
let y1(t) be the output of x1(t). Therefore,

y1(t) = sin[x1(t)] = sin[x(t− t0)].

Now, we have to check whether y1(t) = y(t− t0). To show this, we note that

y(t− t0) = sin[x(t− t0)],

which is the same as y1(t). Therefore, the system is time-invariant.

Example 2.
The system y[n] = nx[n] is not time-invariant.

Proof. To show that the system in not time-invariant, we can construct a counter
example. Let x[n] = δ[n], then y[n] = nδ[n] = 0, ∀n (Why?). Now, let x1[n] =
x[n− 1] = δ[n− 1]. If y1[n] is the output produced by x1[n], it is easy to show that

y1[n] = nx1[n]

= nδ[n− 1]

= δ[n− 1]. (Why?)

However, y[n−1] = (n−1)x[n−1] = (n−1)δ[n−1] = 0 for all n. So y1[n] 6= y[n−1].
In other words, we have constructed an example such that y[n− 1] is not the output
of x[n− 1].

2.1.6 Linear

Definition 18. A system is linear if it is additive and scalable. That is,

ax1(t) + bx2(t) −→ ay1(t) + by2(t),

for all a, b ∈ C.
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Example 1.
The system y(t) = 2πx(t) is linear. To see this, let’s consider a signal

x(t) = ax1(t) + bx2(t),

where y1(t) = 2πx1(t) and y2(t) = 2πx2(t). Then

ay1(t) + by2(t) = a (2πx1(t)) + b (2πx2(t))

= 2π [ax1(t) + bx2(t)] = 2πx(t) = y(t).

Example 2.
The system y[n] = (x[2n])2 is not linear. To see this, let’s consider the signal

x[n] = ax1[n] + bx2[n],

where y1[n] = (x1[2n])2 and y2[n] = (x2[2n])2. We want to see whether y[n] =
ay1[n] + by2[n]. It holds that

ay1[n] + by2[n] = a (x1[2n])2 + b (x2[2n])2 .

However,

y[n] = (x[2n])2 = (ax1[2n] + bx2[2n])2 = a2(x1[2n])2 + b2(x2[2n])2 + 2abx1[n]x2[n].

2.2 Convolution

2.2.1 What is Convolution?

Linear time invariant (LTI) systems are good models for many real-life systems, and
they have properties that lead to a very powerful and effective theory for analyzing
their behavior. In the followings, we want to study LTI systems through its charac-
teristic function, called the impulse response.

To begin with, let us consider discrete-time signals. Denote by h[n] the “impulse
response” of an LTI system S. The impulse response, as it is named, is the response
of the system to a unit impulse input. Recall the definition of an unit impulse:

δ[n] =

{
1, n = 0

0, n 6= 0.
(2.1)
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Figure 2.3: Definition of an impulse response

We have shown that
x[n]δ[n− n0] = x[n0]δ[n− n0]. (2.2)

Using this fact, we get the following equalities:

x[n]δ[n] = x[0]δ[n] (n0 = 0)
x[n]δ[n− 1] = x[1]δ[n− 1] (n0 = 1)
x[n]δ[n− 2] = x[2]δ[n− 2] (n0 = 2)

...
...︸ ︷︷ ︸

=x[n]

(
∞∑

k=−∞
δ[n−k]

) ︸ ︷︷ ︸
=
∞∑

k=−∞
x[k]δ[n−k]

The sum on the left hand side is

x[n]

(
∞∑

k=−∞

δ[n− k]

)
= x[n],

because
∞∑

k=−∞
δ[n− k] = 1 for all n. The sum on the right hand side is

∞∑
k=−∞

x[k]δ[n− k]

Therefore, equating the left hand side and right hand side yields

x[n] =
∞∑

k=−∞

x[k]δ[n− k] (2.3)

In other words, for any signal x[n], we can always express it as a sum of impulses!
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Next, suppose we know that the impulse response of an LTI system is h[n]. We want
to determine the output y[n]. To do so, we first express x[n] as a sum of impulses:

x[n] =
∞∑

k=−∞

x[k]δ[n− k].

For each impulse δ[n− k], we can determine its impulse response, because for an LTI
system:

δ[n− k] −→ h[n− k].

Consequently, we have

x[n] =
∞∑

k=−∞

x[k]δ[n− k] −→
∞∑

k=−∞

x[k]h[n− k] = y[n].

This equation,

y[n] =
∞∑

k=−∞

x[k]h[n− k] (2.4)

is known as the convolution equation.

2.2.2 Definition and Properties of Convolution

Definition 19. Given a signal x[n] and the impulse response of an LTI system h[n],
the convolution between x[n] and h[n] is defined as

y[n] =
∞∑

k=−∞

x[k]h[n− k].

We denote convolution as y[n] = x[n] ∗ h[n].

• Equivalent form: Letting m = n− k, we can show that

∞∑
k=−∞

x[k]h[n− k] =
∞∑

m=−∞

x[n−m]h[m] =
∞∑

k=−∞

x[n− k]h[k].
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• Convolution is true only when the system is LTI. If the system is time-varying,
then

y[n] =
∞∑

k=−∞

x[k]hk[n− k].

i.e., h[n] is different at every time instant k.

The following “standard” properties can be proved easily:

1. Commutative: x[n] ∗ h[n] = h[n] ∗ x[n]

2. Associative: x[n] ∗ (h1[n] ∗ h2[n]) = (x[n] ∗ h1[n]) ∗ h2[n]

3. Distributive: x[n] ∗ (h1[n] + h2[n]) = (x(t) ∗ h1[n]) + (x[n] ∗ h2[n])

2.2.3 How to Evaluate Convolution?

To evaluate convolution, there are three basic steps:

1. Flip

2. Shift

3. Multiply and Add

Example 1. (See Class Demonstration) Consider the signal x[n] and the impulse
response h[n] shown below.

Let’s compute the output y[n] one by one. First, consider y[0]:

y[0] =
∞∑

k=−∞

x[k]h[0− k] =
∞∑

k=−∞

x[k]h[−k] = 1.

Note that h[−k] is the flipped version of h[k], and
∑∞

k=−∞ x[k]h[−k] is the multiply-
add between x[k] and h[−k].
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To calculate y[1], we flip h[k] to get h[−k], shift h[−k] go get h[1−k], and multiply-add
to get

∑∞
k=−∞ x[k]h[1− k]. Therefore,

y[1] =
∞∑

k=−∞

x[k]h[1− k] =
∞∑

k=−∞

x[k]h[1− k] = 1× 1 + 2× 1 = 3.

Pictorially, the calculation is shown in the figure below.

Example 2. (See Class Demonstration)

Example 3. (See Class Demonstration)

x[n] =

(
1

2

)n
u[n],

and
h[n] = δ[n] + δ[n− 1].

2.3 System Properties and Impulse Response

With the notion of convolution, we can now proceed to discuss the system properties
in terms of impulse responses.
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2.3.1 Memoryless

A system is memoryless if the output depends on the current input only. An equivalent
statement using the impulse response h[n] is that:

Theorem 4. An LTI system is memoryless if and only if

h[n] = aδ[n], for some a ∈ C. (2.5)

Proof. If h[n] = aδ[n], then for any input x[n], the output is

y[n] = x[n] ∗ h[n] =
∞∑

k=−∞

x[k]h[n− k]

=
∞∑

k=−∞

x[k]aδ[n− k]

= ax[n].

So, the system is memoryless. Conversely, if the system is memoryless, then y[n]
cannot depend on the values x[k] for k 6= n. Looking at the convolution sum formula

y[n] =
∞∑

k=−∞

x[k]h[n− k],

we conclude that
h[n− k] = 0, for all k 6= n,

or equivalently,
h[n] = 0, , for all n 6= 0.

This implies
y[n] = x[n]h[0] = ax[n],

where we have set a = h[0].

2.3.2 Invertible

Theorem 5. An LTI system is invertible if and only if there exist g[n] such that

h[n] ∗ g[n] = δ[n]. (2.6)
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Proof. If a system S is invertible, then x1[n] 6= x2[n] implies y1[n] 6= y2[n]. So there
exists an injective mapping (one-to-one map) S such that y[n] = S(x[n]) = h[n]∗x[n].
Since f is injective, there exists an inverse mapping S−1 such that

S−1(S(x[n])) = x[n],

for any x[n]. Therefore, there exists g[n] such that

g[n] ∗ (h[n] ∗ x[n]) = x[n].

By associativity of convolution, we have (g[n]∗h[n])∗x[n] = x[n], implying g[n]∗h[n] =
δ[n].

Conversely, if there exist g[n] such that h[n] ∗ g[n] = δ[n], then for any x1[n] 6= x2[n],
we have

y1[n] = h[n] ∗ x1[n]

y2[n] = h[n] ∗ x2[n],

and y1[n] 6= y2[n]. Taking the difference between y1[n] and y2[n], we have

y1[n]− y2[n] = h[n] ∗ {x1[n]− x2[n]} .

Convolving both sides by g[n] yields

g[n] ∗ (y1[n]− y2[n]) = δ[n] ∗ (x1[n]− x2[n]).

Since x1[n] 6= x2[n], and g[n] 6= 0 for all n, we must have y1[n] 6= y2[n]. Therefore,
the system is invertible.

2.3.3 Causal

Theorem 6. An LTI system is causal if and only if

h[n] = 0, for all n < 0. (2.7)

Proof. If S is causal, then the output y[n] cannot depend on x[k] for k > n. From
the convolution equation,

y[n] =
∞∑

k=−∞

x[k]h[n− k],
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we must have

h[n− k] = 0, for k > n, or equivalently h[n− k] = 0, for n− k < 0.

Setting m = n− k, we see that

h[m] = 0, for m < 0.

Conversely, if h[k] = 0 for k < 0, then for input x[n],

y[n] =
∞∑

k=−∞

h[k]x[n− k] =
∞∑
k=0

h[k]x[n− k].

Therefore, y[n] depends only upon x[m] for m ≤ n.

2.3.4 Stable

Theorem 7. An LTI system is stable if and only if

∞∑
k=−∞

|h[k]| <∞.

Proof. Suppose that
∑∞

k=−∞ |h[k]| < ∞. For any bounded signal |x[n]| ≤ B, the
output is

|y[n]| ≤

∣∣∣∣∣
∞∑

k=−∞

x[k]h[n− k]

∣∣∣∣∣
=

∞∑
k=−∞

|x[k]| · |h[n− k]|

≤ B ·
∞∑

k=−∞

|h[n− k]| .

Therefore, y[n] is bounded.

Conversely, suppose that
∑∞

k=−∞ |h[k]| = ∞. We want to show that y[n] is not
bounded. Define a signal

x[n] =

{
1, h[−n] > 0,

−1, h[−n] < 0.
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Clearly, |x[n]| ≤ 1 for all n. The output y[0] is given by

|y[0]| =

∣∣∣∣∣
∞∑

k=−∞

x[k]h[−k]

∣∣∣∣∣
=

∣∣∣∣∣
∞∑

k=−∞

|h[−k]|

∣∣∣∣∣
=

∞∑
k=−∞

|h[−k]| =∞.

Therefore, y[n] is not bounded.

2.4 Continuous-time Convolution

Thus far we have been focusing on the discrete-time case. The continuous-time case,
in fact, is analogous to the discrete-time case. In continuous-time signals, the signal
decomposition is

x(t) =

∫ ∞
−∞

x(τ)δ(t− τ)dτ, (2.8)

and consequently, the continuous time convolution is defined as

y(t) =

∫ ∞
−∞

x(τ)h(t− τ)dτ. (2.9)

Example.
The continuous-time convolution also follows the three step rule: flip, shift, multiply-
add. To see an example, let us consider the signal x(t) = e−atu(t) for a > 0, and
impulse response h(t) = u(t). The output y(t) is
Case A: t > 0:

y(t) =

∫ ∞
−∞

x(τ)h(t− τ)dτ

=

∫ ∞
−∞

e−aτu(τ)u(t− τ)

=

∫ t

0

e−aτdτ

=
1

−a
[
1− e−at

]
.
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Case B: t ≤ 0:

y(t) = 0.

Therefore,

y(t) =
1

a

[
1− e−at

]
u(t).

2.4.1 Properties of CT Convolution

The following properties can be proved easily:

1. Commutative: x(t) ∗ h(t) = h(t) ∗ x(t)

2. Associative: x(t) ∗ (h1(t) ∗ h2(t)) = (x(t) ∗ h1(t)) ∗ h2(t)

3. Distributive: x(t) ∗ [h1(t) + h2(t)] = [x(t) ∗ h1(t)] + [x(t) ∗ h2(t)]

2.4.2 Continuous-time System Properties

The following results are analogous to the discrete-time case.

Memoryless.
An LTI system is memoryless if and only if

h(t) = aδ(t), for some a ∈ C.

Invertible.
An LTI system is invertible if and only if there exist g(t) such that

h(t) ∗ g(t) = δ(t).

Causal.
A system is causal if and only if

h(t) = 0, for all t < 0.

Stable.
A system is stable if and only if ∫ ∞

−∞
|h(τ)|dτ <∞.



Chapter 3

Fourier Series

The objective of this chapter is to identify a family of signals {xk(t)} such that:

1. Every signal in the family passes through any LTI system with only a scale
change (or other simply described change)

xk(t) −→ λkxk(t),

where λk is a scale factor.

2. “Any” signal can be represented as a “linear combination” of signals in their
family.

x(t) =
∞∑

k=−∞

akxk(t).

This would allow us to determine the output generated by x(t):

x(t) −→
∞∑

k=−∞

akλkxk(t),

where the scalar ak comes from the definition of linear combination.

3.1 Eigenfunctions of an LTI System

To answer the first question, we need the notion of eigenfunction of an LTI system.

Definition 20. For an LTI system, if the output is a scaled version of its input, then
the input function is called an eigenfunction of the system. The scaling factor is called
the eigenvalue of the system.

43
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3.1.1 Continuous-time Case

Consider an LTI system with impulse response h(t) and input signal x(t):

Suppose that x(t) = est for some s ∈ C, then the output is given by

y(t) = h(t) ∗ x(t) =

∫ ∞
−∞

h(τ)x(t− τ)dτ

=

∫ ∞
−∞

h(τ)es(t−τ)dτ

=

[∫ ∞
−∞

h(τ)e−sτdτ

]
est = H(s)est = H(s)x(t),

where H(s) is defined as

H(s) =

∫ ∞
−∞

h(τ)e−sτdτ.

The function H(s) is known as the transfer function of the continuous-time LTI sys-
tem. Note that H(s) is defined by the impulse response h(t), and is a function in s
(independent of t). Therefore, H(s)x(t) can be regarded as a scalar H(s) multiplied
to the function x(t).

From the derivation above, we see that if the input is x(t) = est, then the output is
a scaled version y(t) = H(s)est:

Therefore, using the definition of eigenfunction, we show that

1. est is an eigenfunction of any continuous-time LTI system, and

2. H(s) is the corresponding eigenvalue.
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If we specialize to the subclass of periodic complex exponentials of the ejωt, ω ∈ R
by setting s = jω, then

H(s)|s=jω = H(jω) =

∫ ∞
−∞

h(τ)e−jωτdτ.

H(jω) is called the frequency response of the system.

3.1.2 Discrete-time Case

Next, we consider the discrete-time case:

Suppose that the impulse response is given by h[n] and the input is x[n] = zn, then
the output y[n] is

y[n] = h[n] ∗ x[n] =
∞∑

k=−∞

h[k]x[n− k]

=
∞∑

k=−∞

h[k]zn−k

= zn
∞∑

k=−∞

h[k]z−k = H(z)zn,

where we defined

H(z) =
∞∑

k=−∞

h[k]z−k,

and H(z) is known as the transfer function of the discrete-time LTI system.

Similar to the continuous-time case, this result indicates that

1. zn is an eigenfunction of a discrete-time LTI system, and

2. H(z) is the corresponding eigenvalue.
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Considering the subclass of periodic complex exponentials e−j(2π/N)n by setting z =
ej2π/N , we have

H(z)|z=ejΩ = H(ejΩ) =
∞∑

k=−∞

h[k]e−jΩk,

where Ω = 2π
N

, and H(ejΩ) is called the frequency response of the system.

3.1.3 Summary

In summary, we have the following observations:

That is, est is an eigenfunction of a CT system, whereas zn is an eigenfunction of a
DT system. The corresponding eigenvalues are H(s) and H(z).

If we substitute s = jω and z = ejΩ respectively, then the eigenfunctions become ejωt

and ejΩn; the eigenvalues become H(jω) and H(ejΩ).

3.1.4 Why is eigenfunction important?

The answer to this question is related to the second objective in the beginning. Let
us consider a signal x(t):

x(t) = a1e
s1t + a2e

s2t + a3e
s3t.

According the eigenfunction analysis, the output of each complex exponential is

es1t −→ H(s1)es1t

es2t −→ H(s2)es2t

es3t −→ H(s3)es3t.



3.2. FOURIER SERIES REPRESENTATION 47

Therefore, the output is

y(t) = a1H(s1)es1t + a2H(s2)es2t + a3H(s3)es3t.

The result implies that if the input is a linear combination of complex exponentials,
the output of an LTI system is also a linear combination of complex exponentials.
More generally, if x(t) is an infinite sum of complex exponentials,

x(t) =
∞∑

k=−∞

ake
skt,

then the output is again a sum of complex exponentials:

y(t) =
∞∑

k=−∞

akH(sk)e
skt.

Similarly for discrete-time signals, if

x[n] =
∞∑

k=−∞

akz
n
k ,

then

x[n] =
∞∑

k=−∞

akH(zk)z
n
k .

This is an important observation, because as long as we can express a signal x(t) as
a linear combination of eigenfunctions, then the output y(t) can be easily determined
by looking at the transfer function (which is fixed for an LTI system!). Now, the
question is : How do we express a signal x(t) as a linear combination of complex
exponentials?

3.2 Fourier Series Representation

Existence of Fourier Series
In general, not every signal x(t) can be decomposed as a linear combination of complex
exponentials. However, such decomposition is still possible for an extremely large class
of signals. We want to study one class of signals that allows the decomposition. They
are the periodic signals

x(t+ T ) = x(t)
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which satisfy the square integrable condition,∫
T

|x(t)|2dt <∞,

or Dirichlet conditions (You may find more discussions in OW § 3.4):

1. Over any period x(t) must be absolutely integrable, that is,∫
T

|x(t)|dt <∞.

2. In any finite interval of time x(t) is of bounded variation; that is, there are no
more than a finite number of maxima and minima during any single period of
the signal.

3. In any finite interval of time, there are only a finite number of discontinuities.

For this class of signals, we are able to express it as a linear combination of complex
exponentials:

x(t) =
∞∑

k=−∞

ake
jkω0t.

Here, ω0 is the fundamental frequency

ω0 =
2π

T
,

and the coefficients ak are known as the Fourier Series coefficients.

Given a periodic signal x(t) that is square integrable, how do we determine the Fourier
Series coefficients ak? This is answered by the following theorem.

3.2.1 Continuous-time Fourier Series Coefficients

Theorem 8. The continuous-time Fourier series coefficients ak of the signal

x(t) =
∞∑

k=−∞

ake
jkω0t,

is given by

ak =
1

T

∫
T

x(t)e−jkω0tdt.
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Proof. Let us consider the signal

x(t) =
∞∑

k=−∞

ake
jkω0t.

If we multiply on both sides e−jnω0t, then we have

x(t)e−jnω0t =

[
∞∑

k=−∞

ake
jkω0t

]
e−jnω0t =

∞∑
k=−∞

ake
j(k−n)ω0t.

Integrating both sides from 0 to T yields∫ T

0

x(t)e−jnω0tdt =

∫ T

0

[
∞∑

k=−∞

ake
j(k−n)ω0t

]
dt

=
∞∑

k=−∞

[
ak

∫ T

0

ej(k−n)ω0tdt

]
.

The term
∫ T

0
ej(k−n)ω0tdt can be evaluated as (You should check this!)

1

T

∫ T

0

ej(k−n)ω0tdt =

{
1 if k = n
0 otherwise

(3.1)

This result is known as the orthogonality of the complex exponentials.

Using Eq. (3.1), we have ∫ T

0

x(t)e−jnω0tdt = Tan,

which is equivalent to

an =
1

T

∫ T

0

x(t)e−jnω0tdt.

Example 1. Sinusoids
Consider the signal x(t) = 1+ 1

2
cos 2πt+sin 3πt. The period of x(t) is T = 2 [Why?] so

the fundamental frequency is ω0 = 2π
T

= π. Recall Euler’s formula ejθ = cos θ+j sin θ,
we have

x(t) = 1 +
1

4

[
ej2πt + e−j2πt

]
+

1

2j

[
ej3πt − e−j3πt

]
.
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Therefore, the Fourier series coefficients are (just “read off” from this equation!):

a0 = 1, a1 = a−1 = 0, a2 = a−2 =
1

4
, a3 =

1

2j
, a−3 = − 1

2j
,

and ak = 0 otherwise.

Example 2. Periodic Rectangular Wave

Let us determine the Fourier series coefficients of the following signal

x(t) =

{
1 |t| < T1,
0 T1 < |t| < T

2
.

The Fourier series coefficients are (k 6= 0):

ak =
1

T

∫ T/2

−T/2
x(t)e−jkω0tdt =

1

T

∫ T1

−T1

e−jkω0tdt

=
−1

jkω0T

[
e−jkω0t

]T1

−T1

=
2

kω0T

[
ejkω0T1 − e−jkω0T1

2j

]
=

2 sin(kω0T1)

kω0T
.

If k = 0, then

a0 =
1

T

∫ T1

−T1

dt =
2T1

T
.

Example 3. Periodic Impulse Train
Consider the signal x(t) =

∑∞
k=−∞ δ(t − kT ). The fundamental period of x(t) is T

[Why?]. The F.S. coefficients are

ak =
1

T

∫ T/2

−T/2
δ(t)dt =

1

T
,

for any k.
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3.2.2 Discrete-time Fourier Series coefficients

To construct the discrete-time Fourier series representation, we consider periodic
discrete-time signal with period N

x[n] = x[n+N ],

and assume that x[n] is square-summable, i.e.,
∑∞

n=−∞ |x[n]|2 < ∞, or x[n] satisfies
the Dirichlet conditions. In this case, we have

Theorem 9. The discrete-time Fourier series coefficients ak of the signal

x[n] =
∞∑

k=−∞

ake
jkΩ0n,

is given by

ak =
1

N

∑
n=〈N〉

x[n]e−jkΩ0n.

Here,
∑

n=〈N〉 means summing the signal within a period N . Since a periodic discrete-
time signals repeats every N samples, it does not matter which sample to be picked
first.

Example.
Let us consider the following signal shown below. We want to determine the discrete-
time F.S. coefficient.
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For k 6= 0,±N,±2N, . . ., we have

ak =
1

N

∑
n=〈N〉

e−jkΩ0n =
1

N

N1∑
n=−N1

e−jkΩ0n

=
1

N

2N1∑
m=0

e−jkΩ0(m−N1), (m = n+N0)

=
1

N
ejkΩ0N1

2N1∑
m=0

e−jkΩ0m.

Since
2N1∑
m=0

e−jkΩ0m =
1− e−jkΩ0(2N1+1)

1− e−jkΩ0
,

it follows that

ak =
1

N
ejkΩ0N1

(
1− e−jkΩ0(2N1+1)

1− e−jkΩ0

)
, (Ω0 = 2π/N)

=
1

N

e−jk(2π/2N)[ejk2π(N1+1/2)/N − e−jk2π(N1+1/2)/N ]

e−jk(2π/2N)[ejk(2π/2N) − e−jk(2π/2N)]

=
1

N

sin[2πk(N1 + 1/2)/N ]

sin(πk
N

)
.

For k = 0,±N,±2N, . . ., we have

ak =
2N1 + 1

N
.

3.2.3 How do we use Fourier series representation?

Fourier series representation says that any periodic square integrable signals (or sig-
nals that satisfy Dirichlet conditions) can be expressed as a linear combination of
complex exponentials. Since complex exponentials are eigenfunctions to LTI sys-
tems, the output signal must be a linear combination of complex exponentials.

That is, for any signal x(t) we represent it as

x(t) =
∞∑

k=−∞

ake
jkω0t.
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Then, the output signal is given by

y(t) =
∞∑

k=−∞

akH(jkω0)ejkω0t.

Letting bk = H(jkω0)ak, we have

y(t) =
∞∑

k=−∞

bke
jkω0t.

3.2.4 How many Fourier series coefficients are sufficient?

If we define

xN(t) =
N∑

k=−N

ake
jkω0t,

then xN(t) is an approximation of x(t). As N → ∞, we see that xN(t) → x(t). As
an illustration of xN(t) as N increases, we can see the following figure.

Therefore, the number of Fourier series coefficients depends on the accuracy that we
want to achieve. Typically, the number N is chosen such that the residue of the
approximation ∫ ∞

−∞
|x(t)− xN(t)|2 dt ≤ ε,

for some target error level ε.
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3.3 Properties of Fourier Series Coefficients

There are a number of Fourier series properties that we encourage you to read the
text. The following is a quick summary of these properties.

1. Linearity: If x1(t)←→ ak and x2(t)←→ bk, then

Ax1(t) +Bx2(t)←→ Aak +Bbk.

For DT case, we have if x1[n]←→ ak and x2[n]←→ bk, then

Ax1[n] +Bx2[n]←→ Aak +Bbk.

2. Time Shift:

x(t− t0)←→ ake
−jkω0t0

x[n− n0]←→ ake
−jkΩ0n0

To show the time shifting property, let us consider the F.S. coefficient bk of the
signal y(t) = x(t− t0).

bk =
1

T

∫
T

x(t− t0)e−jω0tdt.
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Letting τ = t− t0 in the integral, we obtain

1

T

∫
T

x(τ)e−jkω0(τ+t0)dτ = e−jkω0t0
1

T

∫
T

x(τ)e−jkω0τdτ

where x(t)←→ ak. Therefore,

x(t− t0)←→ ake
−jkω0t0 .

3. Time Reversal:

x(−t)←→ a−k

x[−n]←→ a−k

The proof is simple. Consider a signal y(t) = x(−t). The F.S. representation
of x(−t) is

x(−t) =
∞∑

k=−∞

ake
−jk2πt/T .

Letting k = −m, we have

y(t) = x(−t) =
∞∑

m=−∞

a−me
jm2πt/T .

Thus, x(−t)←→ a−k.

4. Conjugation:

x∗(t)←→ a∗−k
x∗[n]←→ a∗−k

5. Multiplication: If x(t)←→ ak and y(t)←→ bk, then

x(t)y(t)←→
∞∑

l=−∞

akbk−l.

6. Parseval Equality:

1

T

∫
T

|x(t)|2dt =
∞∑

k=−∞

|ak|2

1

N

∑
n=〈N〉

|x[n]|2 =
∑
k=〈N〉

|ak|2

You are required to read Table 3.1 and 3.2.
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Chapter 4

Continuous-time Fourier Transform

Let us begin our discussion by reviewing some limitations of Fourier series represen-
tation. In Fourier series analysis, two conditions on the signals are required:

1. The signal must be periodic, i.e., there exist a T > 0 such that x(t+T ) = x(t).

2. The signal must be square integrable
∫
T
|x(t)|2dt <∞, or satisfies the Dirichlet

conditions.

In this chapter, we want to extend the idea of Fourier Series representation to aperi-
odic signals. That is, we want to relax the first condition to aperiodic signals.

4.1 Insight from Fourier Series

Let’s first consider the following periodic signal

x(t) =

{
1 |t| ≤ T1,

0 T1 ≤ |t| < T
2
,

where x(t) = x(t+ T ). The Fourier Series coefficients of x(t) are (check yourself!)

x(t)
F.S.←→ ak =

2 sin(kω0T1)

kω0T
.

If we substitute ω = kω0, then

ak =
2 sin(ωT1)

wT

∣∣∣
ω=kω0

57
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Multiplying T on both sides yields

Tak =
2 sin(ωT1)

ω
, (4.1)

which is the normalized Fourier Series coefficient.

Pictorially, (4.1) indicates that the normalized Fourier series coefficients Tak are

bounded by the envelop X(ω) = 2 sin(ωT1)
ω

, as illustrated in Fig. 4.1.

Figure 4.1: Fourier Series coefficients of x(t) for some T .

When T increases, the spacing between consecutive ak reduces. However, the shape
of the envelop function X(ω) = 2 sin(ωT1)

ω
remains the same. This can be seen in Fig.

4.2.

Figure 4.2: Fourier Series coefficients of x(t) for some T ′, where T ′ > T .

In the limiting case where T →∞, then the Fourier series coefficients Tak approaches
the envelop function X(ω). This suggests us that if we have an aperiodic signal, we
can treat it as a periodic signal with T →∞. Then the corresponding Fourier series
coefficients approach to the envelop function X(ω). The envelop function is called
the Fourier Transform of the signal x(t). Now, let us study Fourier Transform more
formally.
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4.2 Fourier Transform

The derivation of Fourier Transform consists of three steps.

Step 1.

We assume that an aperiodic signal x(t) has finite duration, i.e., x(t) = 0 for |t| > T/2,
for some T . Since x(t) is aperiodic, we first construct a periodic signal x̃(t):

x̃(t) = x(t),

for −T/2 < t < T/2, and x̃(t+ T ) = x̃(t). Pictorially, we have

Step 2.

Since x̃(t) is periodic, we may express x̃(t) using Fourier Series:

x̃(t) =
∞∑

k=−∞

ake
jkω0t (4.2)

where

ak =
1

T

∫
T

x̃(t)e−jkω0tdt.

The Fourier Series coefficients ak can further be calculated as

ak =
1

T

∫ T
2

−T
2

x̃(t)e−jkω0tdt

=
1

T

∫ T
2

−T
2

x(t)e−jkω0tdt, x̃(t) = x(t), for − T/2 < t < T/2

=
1

T

∫ ∞
−∞

x(t)e−jkω0tdt, x(t) = 0, for |t| > T/2.

If we define

X(jω) =

∫ ∞
−∞

x(t)e−jωtdt (4.3)
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then it holds that

ak =
1

T
X(jkω0). (4.4)

Consequently, substituting (4.4) into (4.2) yields

x̃(t) =
∞∑

k=−∞

1

T
X(jkω0)ejkω0t =

∞∑
k=−∞

1

2π
X(jkω0)ejkω0tω0. (4.5)

Step 3.

Now, note that x̃(t) is the periodic padded version of x(t). When the period T →∞,
the periodic signal x̃(t) approaches x(t). Therefore,

x̃(t) −→ x(t), (4.6)

as T →∞.

Moreover, when T →∞, or equivalently ω0 → 0, the limit of the sum in (4.5) becomes
an integral:

lim
ω0→0

∞∑
k=−∞

1

2π
X(jkω0)ejkω0tω0 =

∫ ∞
−∞

1

2π
X(jω)ejwtdw. (4.7)

Graphically, this can be seen in Fig. 4.3.

Figure 4.3: Illustration of (4.7).
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Combining (4.7) and (4.6), we have

x(t) =
1

2π

∫ ∞
−∞

X(jω)ejwtdw (4.8)

The two equations (4.3) and (4.8) are known as the Fourier Transform pair. (4.3) is
called the Analysis Equation (because we are analyzing the time signal in the Fourier
domain) and (4.8) is called the Synthesis Equation (because we are gathering the
Fourier domain information and reconstruct the time signal).

To summarize we have

Theorem 10. The Fourier Transform X(jω) of a signal x(t) is given by

X(jω) =

∫ ∞
−∞

x(t)e−jωtdt,

and the inverse Fourier Transform is given by

x(t) =
1

2π

∫ ∞
−∞

X(jω)ejwtdw.

4.3 Relation to Fourier Series

At this point you may wonder: What is the difference between Fourier Series and
Fourier Transform? To answer this question, let us apply Fourier Transform to the
following two types of signals.

1. Aperiodic Signal: As we discussed in the derivation of Fourier Transform,
the Fourier Transform of an aperiodic signal is the limiting case (when ω0 →
0) of applying Fourier Series analysis on the periodically padded version of
the aperiodic signal. Fourier Transform can be applied to both periodic and
aperiodic signals, whereas Fourier Series analysis can only be applied to periodic
signals. See Fig. 4.4.

2. Periodic Signal: If the signal x(t) is periodic, then we do not need to construct
x̃(t) and set ω0 → 0. In fact, ω0 is fixed by the period of the signal: If the period
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Figure 4.4: Fourier Transform on aperiodic signals is equivalent to applying Fourier
series analysis on the periodically padded version of the signal, and set the limit of
ω0 → 0.

of x(t) is T0, then ω0 = 2π
T0

. Now, since x(t) is periodic, we can apply Fourier
Series analysis to x(t) and get

x(t) =
∞∑

k=−∞

ake
jkω0t, (4.9)

where ak is the Fourier Series coefficient. If we further apply Fourier Transform
to (4.9), then we have

X(jω) =

∫ ∞
−∞

[
∞∑

k=−∞

ake
jkω0t

]
e−jωtdt

=
∞∑

k=−∞

ak

[∫ ∞
−∞

ejkω0te−jωtdt

]

=
∞∑

k=−∞

ak2πδ(ω − kω0).

Here, the last equality is established by the fact that inverse Fourier Transform
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of 2πδ(ω − kω0) is ejkω0t. To show this, we have

F−1{2πδ(ω − kω0)} =
1

2π

∫ ∞
−∞

2πδ(ω − kω0)ejwtdw

=

∫ ∞
−∞

δ(ω − kω0)ejkω0tdw = ejkω0t.

Therefore, we showed that the Fourier Transform of a periodic signal is a train
of impulses with amplitude defined by the Fourier Series coefficients (and scaled
by a factor of 2π).

Figure 4.5: Fourier Transform and Fourier Series analysis of a periodic signal: Both
yields a train of impulses. For Fourier Transform, the amplitude is multiplied by a
factor of 2π. For Fourier Series coefficients, the separation between each coefficient is
ω0.
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4.4 Examples

Example 1.
Consider the signal x(t) = e−atu(t), for a > 0. Determine the Fourier Transform
X(jω), its magnitude |X(jω)| and its phase ^X(jω).

X(jω) =

∫ ∞
−∞

x(t)e−jωtu(t)dt

=

∫ ∞
0

e−ate−jωtdt , u(t) = 0,whenever t < 0

=
−1

a+ jω

[
e−(a+jω)t

]∞
0

=
1

a+ jω
.

The magnitude and phase can be calculated as

|X(jω)| = 1√
a2 + ω2

^X(jω) = − tan−1
(ω
a

)
.

Example 2.
Consider the signal x(t) = δ(t). The Fourier Transform is

X(jω) =

∫ ∞
−∞

x(t)e−jωtdt

=

∫ ∞
−∞

δ(t)e−jωtdt = 1.

Example 3.
Consider the signal x(t) = ejω0t. We want to show that X(jω) = 2πδ(ω − ω0). To
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see, we take the inverse Fourier Transform:

x(t) =
1

2π

∫ ∞
−∞

X(jω)ejωtdω

=

∫ ∞
−∞

δ(ω − ω0)ejωtdω

= ejω0t

∫ ∞
−∞

δ(ω − ω0)dω = ejω0t.

Example 4.
Consider the aperiodic signal

x(t) =

{
1 |t| ≤ T1

0 |t| > T1

The Fourier Transform is

X(jω) =

∫ ∞
−∞

x(t)e−jωtdt

=

∫ T1

−T1

e−jωtdt =
−1

jω

[
e−jωt

]T1

−T1
= 2

sinωT1

ω
.

Example 5.
Let us determine the CTFT of the unit step function u(t). To do so, we apply CTFT
and get

U(jω) =

∫ ∞
−∞

u(t)e−jωtdt =

∫ ∞
0

ejωtdt = −
[

1

jω
ejωt
]∞

0

.

That is, we have to evaluate the function 1
jω
ejωt at t = 0 and t = ∞. However,

the evaluation at t = ∞ is indeterminate! Therefore, we express y(t) as a limit of
decaying exponentials

u(t) = lim
a→0

e−atu(t).

Then applying CTFT on both sides,

U(jω) = lim
a→0
F
{
e−atu(t)

}
= lim

a→0

1

a+ jω

= lim
a→0

a− jω
a2 + ω2

= lim
a→0

(
a

a2 + ω2
− j ω

a2 + ω2

)
.
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Now, the second term is

lim
a→0
−j ω

a2 + ω2
=

1

jω
.

The first term satisfies

lim
a→0

a

a2 + ω2
= 0, for ω 6= 0.

and

lim
a→0

a

a2 + ω2
= lim

a→0

1

a
=∞, for ω = 0,

while ∫ ∞
−∞

a

a2 + ω2
dω = tan−1 ω

a

∣∣∣∞
−∞

= π, ∀ a ∈ R.

Therefore,

lim
a→0

a

a2 + ω2
= πδ(ω),

and so

U(jω) =
1

jω
+ πδ(ω).

4.5 Properties of Fourier Transform

The properties of Fourier Transform is very similar to those of Fourier Series.

1. Linearity If x1(t)←→ X1(jω) and x2(t)←→ X2(jω), then

ax1(t) + bx2(t)←→ aX1(jω) + bX2(jω).

2. Time Shifting

x(t− t0)←→ e−jωt0X(jω)

Physical interpretation of e−jωt0 :

e−jωt0X(jω) = |X(jω)|ej^X(jω)e−jωt0

= |X(jω)|ej[^X(jω)−ωt0]

So e−jωt0 is contributing to phase shift of X(jω).
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3. Conjugation

x∗(t)←→ X∗(−jω)

If x(t) is real, then x∗(t) = x(t), so X(jω) = X∗(−jω).

4. Differentiation and Integration

d

dt
x(t)←→ jωX(jω)∫ t

−∞
x(τ)dτ ←→ 1

jω
X(jω) + πX(0)δ(ω)

5. Time Scaling

x(t)←→ 1

|a|
X(

jω

a
)

6. Parseval Equality ∫ ∞
−∞
|x(t)|2dt =

1

2π

∫ ∞
−∞
|X(jω)|2dω

7. Duality The important message here is: If x(t)←→ X(jω), then if another signal
y(t) has the shape of X(jω), we can quickly deduce that X(jω) will have the
shape of x(t). Here are two examples:

Duality Example 1 Duality Example 2
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8. Convolution Property

h(t) ∗ x(t)←→ H(jω)X(jω)

Proof: Consider the convolution integral

y(t) =

∫ ∞
−∞

x(τ)h(t− τ)dτ

Taking Fourier Transform on both sides yields

Y (jω) = F
{∫ ∞
−∞

x(τ)h(t− τ)dτ

}
=

∫ ∞
−∞

[∫ ∞
−∞

x(τ)h(t− τ)dτ

]
e−jωtdt

=

∫ ∞
−∞

x(τ)

[∫ ∞
−∞

h(t− τ)e−jωtdt

]
dτ

=

∫ ∞
−∞

x(τ)
[
e−jωτH(jω)

]
dτ

=

∫ ∞
−∞

x(τ)e−jωτdτH(jω)

= X(jω)H(jω)

9. Multiplication Property (you can derive this by yourself)

x(t)y(t)←→ 1

2π
X(jω) ∗ Y (jω)

Example.
Consider the signal x(t) = m(t) cos(ω0t), where m(t) is some bandlimited signal.
Suppose the Fourier Transform of m(t) is M(jω). Since

cos(ω0t) =
ejω0t + e−jω0t

2
←→ π[δ(ω − ω0) + δ(ω + ω0)],

by convolution property, the CTFT of x(t) is

m(t) cos(ω0t)←→
1

2π
M(jω) ∗ π[δ(ω − ω0) + δ(ω + ω0)]

=
1

2
[M(j(ω − ω0)) +M(j(ω + ω0))] .
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4.6 System Analysis using Fourier Transform

First Order System
Let us consider the first order system

dy(t)

dt
+ ay(t) = x(t), (4.10)

for some a > 0. Applying the CTFT to both sides,

F
{
dy(t)

dt
+ ay(t)

}
= F {x(t)} ,

and use linearity property, and differentiation property of CTFT, we have

jωY (jω) + aY (jω) = X(jω).

Rearranging the terms, we can find the frequency response of the system

H(jω) =
Y (jω)

X(jω)
=

1

a+ jω
.

Now, recall the CTFT pair:

h(t) = e−atu(t)⇐⇒ H(jω) =
1

a+ jω
, (4.11)

h(t) can be deduced. Just as quick derivation of this equation, we note that

H(jω) =

∫ ∞
−∞

e−atu(t)e−jωtdt =

∫ ∞
0

e−(jω+a)tdt

= −
[

1

jω + a
e−(jω+a)t

]∞
0

=
1

jω + a
.

General Systems
In general, we want to study the system

N∑
k=0

ak
dky(t)

dtk
=

M∑
k=0

bk
dkx(t)

dtk
. (4.12)

Our objective is to determine h(t) and H(jω). Applying CTFT on both sides:

F

{
N∑
k=0

ak
dky(t)

dtk

}
= F

{
M∑
k=0

bk
dkx(t)

dtk

}
.
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Therefore, by linearity and differentiation property, we have

N∑
k=0

ak(jω)kY (jω) =
M∑
k=0

bk(jω)kX(jω).

The convolution property gives Y (jω) = X(jω)H(jω), so

H(jω) =
Y (jω)

X(jω)
=

∑M
k=0 bk(jω)k∑N
k=0 ak(jω)k

. (4.13)

Now, H(jω) is expressed as a rational function, i.e., a ratio of polynomial. Therefore,
we can apply the technique of partial fraction expansion to express H(jω) in a form
that allows us to determine h(t) by inspection using the transform pair

h(t) = e−atu(t)⇐⇒ H(jω) =
1

a+ jω
,

and related transform pair, such as

te−atu(t)⇐⇒ 1

(a+ jω)2
.

Example 1.
Consider the LTI system

d2y(t)

dt2
+ 4y(t) + 3y(t) =

dx(t)

dt
+ 2x(t).

Taking CTFT on both sides yields

(jω)2Y (jω) + 4jωY (jω) + 3Y (jω) = jωX(jω) + 2X(jω).

and by rearranging terms we have

H(jω) =
jω + 2

(jω)2 + 4(jω) + 3
=

jω + 2

(jω + 1)(jω + 3)
.

Then, by partial fraction expansion we have

H(jω) =
1

2

(
1

jω + 1

)
+

1

2

(
1

jω + 3

)
.
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Thus, h(t) is

h(t) =
1

2
e−tu(t) +

1

2
e−3tu(t).

Example 2.
If the input signal is x(t) = e−tu(t), what should be the output y(t) if the impulse
response of the system is given by h(t) = 1

2
e−tu(t) + 1

2
e−3tu(t)?

Taking CTFT, we know that X(jω) = 1
jω+1

, and H(jω) = jω+2
(jω+1)(jω+3)

. Therefore,
the output is

Y (jω) = H(jω)X(jω) =

[
jω + 2

(jω + 1)(jω + 3)

] [
1

jω + 1

]
=

jω + 2

(jω + 1)2(jω + 3)
.

By partial fraction expansion, we have

Y (jω) =
1
4

jω + 1
+

1
2

(jω + 1)2
−

1
4

jω + 3
.

Therefore, the output is

y(t) =

[
1

4
e−t +

1

2
te−t − 1

4
e−3t

]
u(t).
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Chapter 5

Discrete-time Fourier Transform

5.1 Review on Continuous-time Fourier Transform

Before we derive the discrete-time Fourier Transform, let us recall the way we con-
structed continuous-time Fourier Transform from the continuous-time Fourier Series.
In deriving the continuous-time Fourier Transform, we basically have the following
three steps:

• Step 1: Pad the aperiodic signal 1 x(t) to construct a periodic replicate x̃(t)

• Step 2: Since x̃ (t) is periodic, we find the Fourier series coefficients ak and
represent x̃(t) as

x̃ (t) =
∞∑

k=−∞

ake
jkω0t.

1We are interested in aperiodic signals, because periodic signals can be handled using continuous-
time Fourier Series!

73
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By defining

X (jω) =

∫ ∞
−∞

x (t) ejωtdt, (5.1)

which is known as the continuous-time Fourier Transform, we showed

ak =
1

T
X (jkω0) .

• Step 3: Setting T →∞, we showed x̃ (t)→ x (t) and

x (t) =
1

2π

∫ ∞
−∞

X (jω) ejωtdt (5.2)

5.2 Deriving Discrete-time Fourier Transform

Now, let’s apply the same concept to discrete-time signals. In deriving the discrete-
time Fourier Transform, we also have three key steps.

• Step 1: Consider an aperiodic discrete-time signal x[n]. We pad x[n] to con-
struct a periodic signal x̃[n].

• Step 2: Since x̃[n] is periodic, by discrete-time Fourier Series we have

x̃[n] =
∑
k=〈N〉

ake
jkω0n, (5.3)

where ak can be computed as

ak =
1

N

∑
n=〈N〉

x̃ [n] ejkω0n.
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Here, the frequency is

ω0 =
2π

N
.

Now, note that x̃[n] is a periodic signal with period N , and the non-zero entries
of x̃[n] in a period are the same as the non-zero entries of x[n]. Therefore, it
holds that

ak =
1

N

∑
n=〈N〉

x̃ [n] ejkω0n

=
1

N

∞∑
n=−∞

x [n] ejkω0n.

If we define

X(ejω) =
∞∑

n=−∞

x[n]e−jωn, (5.4)

then

ak =
1

N

∞∑
n=−∞

x[n]ejkω0n =
1

N
X(ejkω0). (5.5)

• Step 3: Putting Equation (5.5) into Equation (5.3), we have

x̃[n] =
∑
k=〈N〉

ake
jkω0n

=
∑
k=〈N〉

[
1

N
X(ejkω0)

]
ejkω0n

=
1

2π

∑
k=〈N〉

X(ejkω0)ejkω0nω0, ω0 =
2π

N
. (5.6)

As N →∞, ω0 → 0 and x̃[n]→ x[n]. Also, from Equation (5.6) becomes

x̃[n] =
1

2π

∑
k=〈N〉

X(ejkω0)ejkω0nω0 −→
1

2π

∫
2π

X(ejω)ejωndω.

Therefore,

x[n] =
1

2π

∫
2π

X(ejω)ejωndω. (5.7)
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Figure 5.1: As N → ∞, ω0 → 0. So the area becomes infinitesimal small and sum
becomes integration.

5.3 Why is X(ejω) periodic ?

It is interesting to note that the continuous-time Fourier Transform X(jω) is aperiodic
in general, but the discrete-time Fourier Transform X(ejω) is always periodic. To see
this, let us consider the discrete-time Fourier Transform (we want to check whether
X(ejω) = X(ej(ω+2π))!):

X(ej(ω+2π)) =
∞∑

n=−∞

x[n]e−j(ω+2π)n

=
∞∑

n=−∞

x[n]e−jωn(e−j2π)n = X(ejω),

because (e−j2π)n = 1n = 1, for any integer n. Therefore, X(ejω) is periodic with
period 2π.

Now, let us consider the continuous-time Fourier Transform (we want to check whether
X(jω) = X(j(ω + 2π))!):

X(j(ω + 2π)) =

∫ ∞
−∞

x(t)e−j(ω+2π)tdt =

∫ ∞
−∞

x(t)e−jωt(e−j2π)tdt.

Here, t ∈ R and is running from −∞ to ∞. Pay attention that e−j2πt 6= 1 unless t is
an integer (which different from the discrete-time case where n is always an integer!).
Therefore, ∫ ∞

−∞
x(t)e−jωte−j2πtdt 6=

∫ ∞
−∞

x(t)e−jωtdt,
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(a) (ej2π)n = 1 for all n, because n is integer. (b) (ej2π)t 6= 1 unless t is an integer.

and consequently,

X(j(ω + 2π)) 6= X(jω).

5.4 Properties of Discrete-time Fourier Transform

Discrete-time Fourier Transform:

X(ejω) =
∞∑

n=−∞

x[n]e−jωn

Discrete-time Inverse Fourier Transform:

x[n] =
1

2π

∫
2π

X(ejω)ejωndω

1. Periodicity:

X(ej(ω+2π)) = X(ejω)

2. Linearity:

ax1[n] + bx2[n]←→ aX1(ejω) + bX2(ejω)

3. Time Shift:

x[n− n0]←→ e−jωn0X(ejω)

4. Phase Shift:

ejω0nx[n]←→ X(ej(ω−ω0))
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5. Conjugacy:
x∗[n]←→ X∗(e−jω)

6. Time Reversal
x[−n]←→ X(e−jω)

7. Differentiation

nx[n]←→ j
dX(ejω)

dω

8. Parseval Equality

∞∑
n=−∞

|x[n]|2 =
1

2π

∫
2π

|X(ejω)|2dω

9. Convolution

y[n] = x[n] ∗ h[n]←→ Y (ejω) = X(ejω)H(ejω)

10. Multiplication

y[n] = x1[n]x2[n]←→ Y (ejω) =
1

2π

∫
2π

X1(ejω)X2(ej(ω−θ))dθ

5.5 Examples

Example 1.
Consider x[n] = δ[n] + δ[n− 1] + δ[n+ 1]. Then

X(ejω) =
∞∑

n=−∞

x[n]e−jωn

=
∞∑

n=−∞

(δ[n] + δ[n− 1] + δ[n+ 1])e−jωn

=
∞∑

n=−∞

δ[n]e−jωn +
∞∑

n=−∞

δ[n− 1]e−jωn +
∞∑

n=−∞

δ[n+ 1]e−jωn

= 1 + e−jω + ejω = 1 + 2 cosω.
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Figure 5.2: Magnitude plot of |X(ejω)| in Example 1.

To sketch the magnitude |X(ejω)|, we note that |X(ejω)| = |1 + 2 cosω|.

Example 2.
Consider x[n] = δ[n] + 2δ[n− 1] + 4δ[n− 2]. The discrete-time Fourier Transform is

X(ejω) = 1 + 2e−jω + 4e−j4ω.

If the impulse response is h[n] = δ[n] + δ[n− 1], then

H(ejω) = 1 + e−jω.

Therefore, the output is

Y (ejω) = H(ejω)X(ejω)

=
[
1 + e−jω

] [
1 + 2e−jω + 4e−j2ω

]
= 1 + 3e−jω + 6e−j2ω + 4e−j3ω.

Taking the inverse discrete-time Fourier Transform, we have

y[n] = δ[n] + 3δ[n− 1] + 6δ[n− 2] + 4δ[n− 3].

Example 3.
Consider x[n] = anu[n], with |a| < 1. The discrete-time Fourier Transform is

X(ejω) =
∞∑
n=0

ane−jωn =
∞∑
n=0

(ae−jω)n =
1

1− ae−jω
.
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(a) 0 < a < 1 (b) −1 < a < 0

Next, let us draw the magnitude |X(ejω)|. To do so, let’s consider∣∣X(ejω)
∣∣2 = X(ejω)X∗(ejω) =

1

1− ae−jω
· 1

1− aejω

=
1

1− a(e−jωejω) + a2

=
1

1− 2a cosω + a2

Case A. If 0 < a < 1, then |X(ejω)|2 achieves maximum when ω = 0, and |X(ejω)|2

achieves minimum when ω = π. Thus,

max
{∣∣X(ejω)

∣∣2} =
1

1− 2a+ a2
=

1

(1− a)2

min
{∣∣X(ejω)

∣∣2} =
1

1 + 2a+ a2
=

1

(1 + a)2
.

Case B: If −1 < a < 0, then |X(ejω)|2 achieves maximum when ω = π, and |X(ejω)|2

achieves minimum when ω = 0. Thus,

max
{∣∣X(ejω)

∣∣2} =
1

1 + 2a+ a2
=

1

(1 + a)2

min
{∣∣X(ejω)

∣∣2} =
1

1− 2a+ a2
=

1

(1− a)2
.

5.6 Discrete-time Filters

In digital signal processing, there are generally four types of filters that we often use.
Namely, they are the lowpass filters, highpass filters, bandpass filters and bandstop
filters. There is no precise definition for being “low” or “high”. However, it is usually
easy to infer the type from viewing their magnitude response.
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(a) An ideal lowpass filter (b) An ideal highpass filter

(c) An ideal bandpass filter (d) An ideal bandstop filter

5.7 Appendix

Geometric Series:

N∑
n=0

xn = 1 + x+ x2 + . . .+ xn =
1− xN+1

1− x
,

∞∑
n=0

xn = 1 + x+ x2 + . . . =
1

1− x
, when |x| < 1.
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Chapter 6

Sampling Theorem

Sampling theorem plays a crucial role in modern digital signal processing. The the-
orem concerns about the minimum sampling rate required to convert a continuous
time signal to a digital signal, without loss of information.

6.1 Analog to Digital Conversion

Consider the following system shown in Fig. 6.1. This system is called an analog-
to-digital (A/D) conversion system. The basic idea of A/D conversion is to take a
continuous-time signal, and convert it to a discrete-time signal.

Figure 6.1: An analog to digital (A/D) conversion system.

Mathematically, if the continuous-time signal is x(t), we can collect a set of samples
by multiplying x(t) with an impulse train p(t):

p(t) =
∞∑

n=−∞

δ(t− nT ),

83
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where T is the period of the impulse train. Multiplying x(t) with p(t) yields

xp(t) = x(t)p(t)

= x(t)
∞∑

n=−∞

δ(t− nT )

=
∞∑

n=−∞

x(t)δ(t− nT )

=
∞∑

n=−∞

x(nT )δ(t− nT ).

Pictorially, xp(t) is a set of impulses bounded by the envelop x(t) as shown in Fig.
6.2.

Figure 6.2: An example of A/D conversion. The output signal xp(t) represents a set
of samples of the signal x(t).

We may regard xp(t) as the samples of x(t). Note that xp(t) is still a continuous-time
signal! (We can view xp(t) as a discrete-time signal if we define xp[n] = x(nT ). But
this is not an important issue here.)

6.2 Frequency Analysis of A/D Conversion

Having an explanation of the A/D conversion in time domain, we now want to study
the A/D conversion in the frequency domain. (Why? We need it for the develop-
ment of Sampling Theorem!) So, how do the frequency responses X(jω), P (jω) and
Xp(jω) look like?
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6.2.1 How does P (jω) look like?

Let’s start with P (jω). From Table 4.2 of the textbook, we know that

p(t) =
∞∑

n=−∞

δ(t− nT )
F.T.←→ 2π

T

∞∑
k=−∞

δ(ω − 2πk

T
) = P (jω) (6.1)

This means that the frequency response of the impulse train p(t) is another impulse
train. The only difference is that the period of p(t) is T , whereas the period of P (jω)
is 2π

T
.

Figure 6.3: Illustration of X(jω) and P (jω).

6.2.2 How does Xp(jω) look like?

Next, suppose that the signal x(t) has a frequency response X(jω). We want to know
the frequency response of the output xp(t). From the definition of xp(t), we know
know that

xp(t) = x(t)p(t).

Therefore, by the multiplication property of Fourier Transform, we have

Xp(jω) =
1

2π
X(jω) ∗ P (jω).
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Shown in Fig. 6.3 are the frequency response of X(jω) and P (jω) respectively. To
perform the convolution in frequency domain, we first note that P (jω) is an impulse
train. Therefore, convolving X(jω) with P (jω) is basically producing replicates at
every 2π

T
. The result is shown in Fig. 6.4.

Figure 6.4: Convolution between X(jω) and P (jω) yields periodic replicates of
X(jω).

Mathematically, the output Xp(jω) is given by

Xp(jω) =
1

2π
X(jω) ∗ P (jω) =

1

2π

∫ ∞
−∞

X(jθ)P (j(ω − θ))dθ

=
1

2π

∫ ∞
−∞

X(jθ)

[
2π

T

∞∑
k=−∞

δ(ω − θ − 2πk

T
)

]
dθ

=
1

T

∞∑
k=−∞

[∫ ∞
−∞

X(jθ)δ(ω − θ − 2πk

T
)dθ

]

=
1

T

∞∑
k=−∞

X

(
j(ω − 2πk

T
)

)
.

The result is illustrated in Fig. 6.5.

6.2.3 What happens if T becomes larger and larger ?

If T becomes larger and larger (i.e., we take fewer and fewer samples), we know
from the definition of p(t) that the period (in time domain) between two consecutive
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Figure 6.5: Illustration of xp(t) and Xp(jω).

impulses increases (i.e., farther apart). In frequency domain, since

P (jω) =
2π

T

∞∑
k=−∞

δ(ω − 2πk

T
),

the period 2π
T

reduces! In other words, the impulses are more packed in frequency
domain when T increases. Fig. 6.6 illustrates this idea.

Figure 6.6: When T increases, the period in frequency domain reduces.

If we consider Xp(jω), which is a periodic replicate of X(jω) at the impulses given
by P (jω), we see that the separation between replicates reduces. When T hits cer-
tain limit, the separation becomes zero; and beyond that limit, the replicates start to
overlap! When the frequency replicates overlap, we say that there is aliasing.
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Figure 6.7: When T is sufficiently large, there will be overlap between consecutive
replicates.

Therefore, in order to avoid aliasing, T cannot be too large. If we define the sampling
rate to be

ωs =
2π

T
,

then smaller T implies higher ωs. In other words, there is a minimum sampling rate
such that no aliasing occurs.

Figure 6.8: Meanings of high sampling rate v.s. low sampling rate.

6.2.4 What is the minimum sampling rate such that there is
no aliasing?

Here, let us assume that the signal x(t) is band-limited. That is, we assumeX(jω) = 0
for all |ω| > W , where W is known as the band-width.

To answer this question, we need the Sampling Theorem.
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Figure 6.9: Left: A band limited signal (since X(jω) = 0 for all ω > |W |.) Right: A
band non-limited signal.

6.3 Sampling Theorem

Theorem 11 (Sampling Theorem). Let x(t) be a band limited signal with X(jω) = 0
for all |ω| > W . Then the minimum sampling rate such that no aliasing occurs in
Xp(jω) is

ωs > 2W,

where ωs = 2π
T

.

6.3.1 Explanation

Suppose x(t) has bandwidth W . The tightest arrangement that no aliasing occurs is
shown in Fig. 6.10

Figure 6.10: Minimum sampling rate that there is no aliasing.

In this case, we see that the sampling rate ωs (= 2π
T

) is

ωs = 2W.
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If T is larger (or ωs is smaller), then 2π
T

becomes less than 2W , and aliasing occurs.
Therefore, the minimum sampling rate to ensure no aliasing is

ωs > 2W.

6.3.2 Example

Suppose there is a signal with maximum frequency 40kHz. What is the minimum
sampling rate ?

Figure 6.11: Example: Minimum sampling frequency.

Answer :
Since ω = 2πf , we know that the max frequency (in rad) is ω = 2π(40 × 103) =
80× 103π (rad). Therefore, the minimum Sampling rate is: 2× (80× 103π), which is
160× 103π (rad) = 80kHz.

6.4 Digital to Analog Conversion

In the previous sections, we studied A/D conversion. Now, given a discrete-time
signal (assume no aliasing), we would like to construct the continuous time signal.

6.4.1 Given Xp(t) (no aliasing), how do I recover x(t)?

If no aliasing occurs during the sampling processing (i.e., multiply x(t) with p(t)),
then we can apply a lowpass filter H(jω) to extract the x(t) from xp(t). Fig. 6.12
shows a schematic diagram of how this is performed.

To see how an ideal lowpass filter can extract x(t) from xp(t), we first look at the
frequency response of Xp(jω). Suppose that p(t) has a period of T (so that ωs = 2π

T
).
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Figure 6.12: Schematic diagram of recovering x(t) from xp(t). The filter H(jω) is
assumed to be an ideal lowpass filter.

Then

Xp(jω) =
1

T

∞∑
−∞

X(j(ω − kωs)).

As shown in the top left of Fig. 6.13, Xp(jω) is a periodic replicate of X(jω). Since
we assume that there is no aliasing, the replicate covering the y-axis is identical to
X(jω). That is, for |ω| < ωs

2
,

Xp(jω) = X(jω).

Now, if we apply an ideal lowpass filter (shown in bottom left of Fig. 6.13):

H(jω) =

{
1, |ω| < ωs

2
,

0, otherwise,

then
Xp(jω)H(jω) = X(jω),

for all ω. Taking the inverse continuous-time Fourier transform, we can obtain x(t).

6.4.2 If Xp(t) has aliasing, can I still recover x(t) from xp(t) ?

The answer is NO. If aliasing occurs, then the condition

Xp(jω) = X(jω)
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Figure 6.13: Left: Multiplication between Xp(jω) and the lowpass filter H(jω). The

extracted output X̂(jω) is identical to X(jω) if no aliasing occurs. By applying
inverse Fourier transform to X̂(jω) we can obtain x(t).

does not hold for all |ω| < ωs
2

. Consequently, even if we apply the lowpass filter H(jω)
to Xp(jω), the result is not X(jω). This can be seen in Fig. 6.14.

Figure 6.14: If aliasing occurs, we are unable to recover x(t) from xp(t) by using an
ideal lowpass filter.
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6.4.3 What can I do if my sampling device does not support
a very high sampling rate ?

• Method 1: Buy a better sampling device !

• Method 2: Send signals with narrower bandwidth or limit the bandwidth be-
fore sending :

• Method 3: Go to grad school and learn more cool methods !!
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Chapter 7

The z-Transform

The z-transform is a generalization of the discrete-time Fourier transform we learned
in Chapter 5. As we will see, z-transform allows us to study some system properties
that DTFT cannot do.

7.1 The z-Transform

Definition 21. The z-transform of a discrete-time signal x[n] is:

X(z) =
∞∑

n=−∞

x[n]z−n. (7.1)

We denote the z-transform operation as

x[n]←→ X(z).

In general, the number z in (7.1) is a complex number. Therefore, we may write z as

z = rejw,

where r ∈ R and w ∈ R. When r = 1, (7.1) becomes

X(ejw) =
∞∑

n=−∞

x[n]e−jwn,

which is the discrete-time Fourier transform of x[n]. Therefore, DTFT is a special
case of the z-transform! Pictorially, we can view DTFT as the z-transform evaluated
on the unit circle:

95
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Figure 7.1: Complex z-plane. The z-transform reduces to DTFT for values of z on
the unit circle.

When r 6= 1, the z-transform is equivalent to

X(rejw) =
∞∑
−∞

x[n]
(
rejw

)−n
=
∞∑
−∞

(
r−nx[n]

)
e−jwn

= F
[
r−nx[n]

]
,

which is the DTFT of the signal r−nx[n]. However, from the development of DTFT
we know that DTFT does not always exist. It exists only when the signal is square
summable, or satisfies the Dirichlet conditions. Therefore, X(z) does not always
converge. It converges only for some values of r. This range of r is called the region
of convergence.

Definition 22. The Region of Convergence (ROC) of the z-transform is the set of
z such that X(z) converges, i.e.,

∞∑
n=−∞

|x[n]|r−n <∞.
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Example 1. Consider the signal x[n] = anu[n], with 0 < a < 1. The z-transform of
x[n] is

X(z) =
∞∑
−∞

anu[n]z−n

=
∞∑
n=0

(
az−1

)n
.

Therefore, X(z) converges if
∑∞

n=0 (az−1)
n
< ∞. From geometric series, we know

that

∞∑
n=0

(
rz−1

)n
=

1

1− az−1
,

when |az−1| < 1, or equivalently |z| > |a|. So,

X(z) =
1

1− ax−1
,

with ROC being the set of z such that |z| > |a|.

Figure 7.2: Pole-zero plot and ROC of Example 1.
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Example 2. Consider the signal x[n] = −anu[−n − 1] with 0 < a < 1. The
z-transform of x[n] is

X(z) = −
∞∑

n=−∞

anu[−n− 1]z−n

= −
−1∑

n=−∞

anz−n

= −
∞∑
n=1

a−nzn

= 1−
∞∑
n=0

(
a−1z

)n
.

Therefore, X(z) converges when |a−1z| < 1, or equivalently |z| < |a|. In this case,

X(z) = 1− 1

1− a−1z
=

1

1− az−1
,

with ROC being the set of z such that |z| < |a|. Note that the z-transform is the
same as that of Example 1. The only difference is the ROC. In fact, Example 2 is
just the left-sided version of Example 1!

Figure 7.3: Pole-zero plot and ROC of Example 2.
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Example 3. Consider the signal

x[n] = 7

(
1

3

)n
u[n]− 6

(
1

2

)n
u[n].

The z-transform is

X(z) =
∞∑

n=−∞

[
7

(
1

3

)n
− 6

(
1

2

)n]
u[n]z−n

= 7
∞∑

n=−∞

(
1

3

)n
u[n]z−n − 6

∞∑
n=−∞

(
1

2

)n
u[n]z−n

= 7

(
1

1− 1
3
z−1

)
− 6

(
1

1− 1
2
z−1

)
=

1− 3
2
z−1(

1− 1
3
z−1
) (

1− 1
2
z−1
) .

For X(z) to converge, both sums in X(z) must converge. So we need both |z| > |1
3
|

and |z| > |1
2
|. Thus, the ROC is the set of z such that |z| > |1

2
|.

Figure 7.4: Pole-zero plot and ROC of Example 3.
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7.2 z-transform Pairs

7.2.1 A. Table 10.2

1. δ[n]←→ 1, all z

2. δ[n−m]←→ z−m, all z except 0 when m > 0 and ∞ when m < 0.

3. u[n]←→ 1
1−z−1 , |z| > 1

4. anu[n]←→ 1
1−az−1 , |z| > a

5. −anu[−n− 1]←→ 1
1−az−1 , |z| < |a|.

Example 4. Let us show that δ[n]←→ 1. To see this,

X(z) =
∞∑

n=−∞

x[n]z−n =
∞∑

n=−∞

δ[n]z−n

=
∞∑

n=−∞

δ[n] = 1.

Example 5. Let’s show that δ[n−m]←→ z−m:

X(z) =
∞∑

n=−∞

x[n]z−n =
∞∑

n=−∞

δ[n−m]z−n

= z−m
∞∑

n=−∞

δ[n−m] = z−m.

7.2.2 B. Table 10.1

1. ax1[n] + bx2[n]←→ aX1(z) + bX2(z)

2. x[n− n0]←→ X(z)z−n0

3. zn0x[n]←→ X( z
z0

)

4. ejw0nx[n]←→ X(e−jw0z)

5. x[−n]←→ X(1
z
)
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6. x∗[n]←→ X∗(z∗)

7. x1[n] ∗ x2[n]←→ X1(z)X2(z)

8. If y[n] =

{
x[n/L], n is multiples of L

0, otherwise,

then Y (z) = X(zL).

Example 6. Consider the signal h[n] = δ[n] + δ[n− 1] + 2δ[n− 2]. The z-Transform
of h[n] is

H(z) = 1 + z−1 + 2z−2.

Example 7. Let prove that x[−n]←→ X(z−1). Letting y[n] = x[−n], we have

Y (z) =
∞∑

n=−∞

y[n]z−n =
∞∑

n=−∞

x[−n]z−n

=
∞∑

m=−∞

x[m]zm = X(1/z).

Example 8. Consider the signal x[n] =
(

1
3

)
sin
(
π
4
n
)
u[n]. To find the z-Transform,

we first note that

x[n] =
1

2j

(
1

3
ej

π
4

)n
u[n]− 1

2j

(
1

3
e−j

π
4

)n
u[n].

The z-Transform is

X(z) =
∞∑

n=−∞

x[n]z−n

=
∞∑
n=0

1

2j

(
1

3
ej

π
4 z−1

)n
−
∞∑
n=0

1

2j

(
1

3
e−j

π
4 z−1

)n
=

1

2j

1

1− 1
3
ej

π
4 z−1

− 1

2j

1

1− 1
3
e−j

π
4 z−1

=

1
3
√

2
z−1

(1− 1
3
ej

π
4 z−1)(1− 1

3
e−j

π
4 z−1)

.
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7.3 Properties of ROC

Property 1. The ROC is a ring or disk in the z-plane center at origin.

Property 2. DTFT of x[n] exists if and only if ROC includes the unit circle.

Proof. By definition, ROC is the set of z such that X(z) converges. DTFT is the z-
transform evaluated on the unit circle. Therefore, if ROC includes the unit circle, then
X(z) converges for any value of z on the unit circle. That is, DTFT converges.

Property 3. The ROC contains no poles.

Property 4. If x[n] is a finite impulse response (FIR), then the ROC is the entire
z-plane.

Property 5. If x[n] is a right-sided sequence, then ROC extends outward from the
outermost pole.

Property 6. If x[n] is a left-sided sequence, then ROC extends inward from the
innermost pole.

Proof. Let’s consider the right-sided case. Note that it is sufficient to show that if a
complex number z with magnitude |z| = r0 is inside the ROC, then any other complex
number z′ with magnitude |z′| = r1 > r0 will also be in the ROC.
Now, suppose x[n] is a right-sided sequence. So, x[n] is zero prior to some values of
n, say N1. That is

x[n] = 0, n ≤ N1.

Consider a point z with |z| = r0, and r0 < 1. Then

X(z) =
∞∑

n=−∞

x[n]z−n

=
∞∑

n=N1

x[n]r−n0 <∞,
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because r0 < 1 guarantees that the sum is finite.

Now, if there is another point z′ with |z′| = r1 > r0, we may write r1 = ar0 for some
a > 1. Then the series

∞∑
n=N1

x[n]r−n1 =
∞∑

n=N1

x[n]a−nr−n0

≤ aN1

∞∑
n=N1

x[n]r−n0 <∞.

So, z′ is also in the ROC.

Property 7. If X(z) is rational, i.e., X(z) = A(z)
B(z)

where A(z) and B(z) are poly-

nomials, and if x[n] is right-sided, then the ROC is the region outside the outermost
pole.

Proof. If X(z) is rational, then by (Appendix, A.57) of the textbook

X(z) =
A(z)

B(z)
=

∑n−1
k=0 akz

k∏r
k=1(1− p−1

k z)σk
,

where pk is the k-th pole of the system. Using partial fraction, we have

X(z) =
r∑
i=1

σi∑
k=1

Cik

(1− p−1
i z)k

.

Each of the term in the partial fraction has an ROC being the set of z such that
|z| > |pi| (because x[n] is right-sided). In order to have X(z) convergent, the ROC
must be the intersection of all individual ROCs. Therefore, the ROC is the region
outside the outermost pole.

For example, if

X(z) =
1

(1− 1
3
z−1)(1− 1

2
z−1)

,

then the ROC is the region |z| > 1
2
.
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7.4 System Properties using z-transform

7.4.1 Causality

Property 8. A discrete-time LTI system is causal if and only if ROC is the exterior
of a circle (including ∞).

Proof. A system is causal if and only if

h[n] = 0, n < 0.

Therefore, h[n] must be right-sided. Property 5 implies that ROC is outside a circle.

Also, by the definition that

H(z) =
∞∑
n=0

h[n]z−n

where there is no positive powers of z, H(z) converges also when z →∞ (Of course,
|z| > 1 when z →∞!).

7.4.2 Stablility

Property 9. A discrete-time LTI system is stable if and only if ROC of H(z)
includes the unit circle.

Proof. A system is stable if and only if h[n] is absolutely summable, if and only if
DTFT of h[n] exists. Consequently by Property 2, ROC of H(z) must include the
unit circle.

Property 10. A causal discrete-time LTI system is stable if and only if all of its
poles are inside the unit circle.

Proof. The proof follows from Property 8 and 9 directly.
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Examples.


